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Preface

The MoDeVa series of workshops offers a forum for researchers and practitioners
with varying backgrounds to discuss new ideas concerning links between model-
based design and model-based validation. It aims to introduce models as a link
between the theoretic foundations of Validation and Verification, and the prac-
tice of model-based testing. Also, it seeks to critically examine the pivotal parts
of the Model-Driven Architecture paradigm: Models, Metamodels and Transfor-
mations.

MDA and its related approaches (DSL, MDE, . . . ) primarily revolve around
manual refinement and automated transformation of models. This approach is
successful at quickly generating results. However, it is difficult to gauge the
quality of those results. Is the result of a transformation really what the user
intended? Does the computed result of a transformation really conform with its
specified result? Such questions about intended and specified behaviour usually
delineate the domain of Validation and Verification (V&V). V&V is an estab-
lished area of research, and a transfer of ideas between V&V and MDA might
help to improve quality and reliability of MDA and induce a new conceptual way
of thinking in established V&V. The emergence of model-based testing can be
seen as a first result of such a transfer. However, we believe that to go beyond
model-based testing and take a truly model-driven-development approach to
V&V would yield even greater benefits. This workshop has fostered a discussion
in this direction presenting work related on the following topics:

– The application of V&V using MDA
– The application of ‘traditional’ V&V to MDA
– The integration of testing tools and MDA tools
– The application of V&V to MDA transformations
– The application of ‘novel’ V&V to MDA
– V&V due to the evolution of models on any level
– The extension of UML in a tool-independent way to allow V&V
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Validating Transformations on Domain-Specific
Models

Keynote Address

Jon Whittle1

George Mason University, 4400 University Drive Fairfax, VA 22030-4444, USA,
jwhittle@ise.gmu.edu,

WWW home page: http://ise.gmu.edu/ jwhittle/

Abstract. Model-Driven Software Development brings new hopes and
new challenges for the V&V of safety- and mission-critical systems. On
the one hand, automated model transformations have the potential to
reduce testing effort since a significant amount of code can be auto-
generated. On the other hand, for practical systems, the transformations
themselves may contain errors and therefore need to be validated. This
talk will present work on verifying key properties of auto-generated code
by augmenting transformations to output not only code, but also infor-
mation that can be used to show the correctness of the code. These ideas
were implemented in the Autofilter code generator at NASA Ames
Research Center. Autofilter generates key portions of flight control
software based on a domain-specific model. As an experiment, Autofil-
ter was used to generate code equivalent to that flown on the Deep
Space I probe. The talk discusses techniques for validating Autofil-
ter’s code generator and will offer hints at future research directions.
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Jon Whittle is an Associate Professor at George Mason University, Fairfax, Vir-
ginia. He has a PhD and MSc from the University of Edinburgh and a Bachelors
from the University of Oxford. Before returning to academia, he was a research
lead at NASA Ames Research Center where he developed and applied new tech-
niques in model-driven software development. Jon is an Associate Editor of the
Software and Systems Modeling Journal, Vice Chair of the Steering Committee
of the International Conference on Model Driven Engineering, Languages and
Systems (MoDELS) and PC member for a number of IEEE/ACM conferences.
He has conducted research in artificial intelligence, formal methods, requirements
engineering, and software modeling. He has taught software engineering across
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Extending the Unified Process with
Model-Based Testing

Fabrice Bouquet, Stéphane Debricon, Bruno Legeard, and Jean-Daniel Nicolet

Laboratoire d’Informatique de Franche-Comté (LIFC),
{bouquet,debricon}@lifc.univ-fcomte.fr

Leirios Technologie,
legeard@leirios.com

Centre des Technologies de l’Information de l’état de Genève (CTI),
jean-daniel.nicolet@etat.ge.ch

Abstract. The Unified Process (UP) is a software development tech-
nique that includes modeling of specifications and testing workflow. This
workflow is achieved by information interpretation of specification to pro-
duce manual tests. In this paper, we extend the UP with model-based
testing (MBT) where models resulting of the UP will be used for MBT.
We describe how model-based testing introduces new test design activi-
ties in parallel with the application design activities. We give guidelines
to derive the test model from the analysis model produced by the UP.
We illustrate this tailored process with the example of a Geneva State
taxation.

Key words: Unified Process, Model-Based Testing, Class Diagrams,
Statecharts, OCL, Model specialization

1 Introduction

Model-based testing (MBT) exists as a process [1], describing each step needed
from creating a test model, automatically generating test cases and executable
test scripts from that model. MBT can then be viewed as an independent pro-
cess in the development life cycle. To make it more efficient and widely used,
our purpose is to include MBT in an existing and recognize process, that is to
extend the Unified Process (UP) to support model-based testing key features.
The UP is a software engineering process. Its goal is to transform requirements
into software. To realize this transformation we model requirements, using for
example the Unified Modeling Language (UML). And then models evolve to be
more and more precise and finally an implementation of the system is made.
We propose guidelines to specialize model produced by the UP into model suit-
able for test generation. The new process called UPMBT will then support the
usual manual writing of test cases, but also the automatic generation of tests
from a new artefact called test model. This is a key concept of UP, the ability
to be tailored. The most famous version of the UP is the RUP (Rational Unified
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Process), which comes with tools and support. There are also other example of
tailored UP such as the EUP (Enterprise Unified Process)[2].
In this paper we define an extension of the UP to include the model-based test-
ing process. In the first section we will introduce the unified process, and the
model-based testing process. In the second section we will describe how the UP
evolves to support MBT. We also explain benefits and gains expected in the
development process. Then we will propose a way to produce a test model from
a model provided by the UP. The last section will present a case study based on
the life cycle of a taxation in Switzerland.

2 Overview of the Unified Process and Model-Based
Testing

In this section we introduce in more details UP and MBT.

2.1 The Unified Process (UP)

We want to consider a software development technique called the Unified Process.
The goal of the UP is to define who does what, when and how. The UP is
strongly tied to UML [3], but they are actually independent. The UP is the
methodology explaining how to transform requirements into software. UML is
the visual language necessary to the methodology. Note that UML has been
standardized by the OMG. A meta-model exists for both, each of which being an
instance of the meta-meta-model named Meta-Object Facility (MOF), defined
as the nearly universal root from which several other meta-model derive, like
for example XMI (the XML format used to store UML models) and CWM
(Common Warehouse Metamodel). The meta-model used for the UP is called
Software Process Engineering Metamodel (SPEM).

First research leading to the creation of the UP have been done by Ericsson
(the Ericsson approach 1967) and Rational (the Rational Objectory Process,
1996 to 1997) now a part of IBM. In addition it is also based on other best
practice and guidelines such as managing requirements, visual modeling of soft-
ware, component-based architectures, iterative development, verifying software
quality and managing changes of software.

The UP is organized into four phases, often with several iterations happening
inside some of these phases [4]. The phases are:

Inception: The goal of the inception phase is to have an overview of the overall
project; this phase should establish feasibility, from technical prototyping to
functional behavior modeling. Stakeholders and project management should
end up with an agreement on the scope of the project. Major risks have been
identified and a business case expressing how the project delivers benefits to
the business is available. The inception phase should evaluate the cost and
produce a schedule for the project.
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Elaboration: The goal of the elaboration phase is to produce a working skeleton
of the architecture of the project. This skeleton will capture some of the most
risky functional behavior expressed in the requirements. By the end of this
stage, most of the use cases have been written, the hard engineering decisions
have been made and the final commitment of whether or not continue with
the project can be made.

Construction: The goal of this phase is to build the product. The construction
phase is usually a series of development iterations that flesh out the func-
tionality of the skeleton into a deliverable product. Each iteration goes for
one to two months, has a fixed deadline and produce a release that can be
tested and evaluated by users.

Transition: The goal of this phase is to deliver the finished product to the
users. This includes deployment, beta-testing, completion of the user docu-
mentation, training of the end users and reacting to user feedback. A project
review is done to evaluate the process.

2.2 Model-Based Testing (MBT)

The objective of testing is to find defects in software. To achieve this goal, one
must be able to find differences between an implementation and what stakehold-
ers expressed in requirements.

One way to do this is to use model-based testing; it relies on a behavior
model, precise enough, of the requirements. The testing model should capture
the expected behavior with sufficient abstraction; we don’t want to consider
every detail.

An implementation should offer an adequate solution to every requirement
expressed whether they were formal or not. In fact, if we consider a model as
detailed as the System Under Test (SUT), we would rather validate the imple-
mentation.

Abstraction is a necessity for model-based testing, but any omission will lead
to the impossibility to generate tests for the omitted part. It is a question of
choice, for the modeler, whether he wants tests for a requirement or not.

Models should be abstract but precise and complete enough to generate the
required test case and the expected results (the test oracle). The models we
consider are universal rather than existential abstractions - e.g. state machine
diagrams or pre-post conditions as opposed to sequence diagrams [5].

We will consider a template for a process conducting the generation and
execution of tests on a SUT as shown in Fig. 1.

Step 1 A model of behavior is deduced from requirements and specification doc-
uments. Abstractions will be made at that point; it can range from output
abstraction (we don’t care about a specific result) to functionality abstrac-
tion (a part of the SUT is excluded).
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Fig. 1. model-based testing process

Step 2 This step of the process should defined test selection criteria. Arguably,
a good test case is one that is likely to detect severe and likely failures at an
acceptable cost, and that is helpful at identifying the underlying fault [5].
This definition is too general and does not explicit a way to define relevant
test selection criterion. A good practice is to relate test selection criteria
to a specific functionality in the SUT. The ability of the testing engineer is
of great importance for the choice of criteria regarding the test suite that
should be generated.

Step 3 Test selection criteria are then transformed into test case specification.
They formalize the notion of test selection criteria and render them opera-
tional. The set of test case that satisfy a test case specification can be of any
cardinality: it is empty if there is no satisfying test case; usually, they are
many test cases that satisfy it.

Step 4 With the testing model and the test case specification, a test suite can
be produced. The difference between a test case specification and a test suite
is that the further is intentional while the latter is extensional: all tests are
explicitly enumerated. This work is done by a test case generator taking the
model and the test case specification to produce tests.

Step 5 Tests produced in the previous step will now be executed on the im-
plementation of the SUT. But first we need to add some kind of interface
between our test and the implementation. Remember that we made some
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abstraction on the model, so we can assume that it will not be possible
to execute directly the tests produced. We need to add what is called an
adapter to bridge those different levels. The goal of this module is to con-
cretize inputs and then to pass them to the implementation and record the
output produce by it. Those results will be used to give a verdict on the test
case. A verdict is the comparison result of the output of the SUT with the
expected output as provided by the test case. There are 3 distinct verdicts:
pass, fail and inconclusive. A test passes if outputs defined by the test case
and produced by the SUT are equivalent. It fails if they are different. The
inconclusive verdict applies to non determinist system.

3 Extending the Unified Process with Model-Based
Testing

In this section we will extend the UP to support a MBT process, and we describe
what benefits could be expected.

3.1 Evolutions in the UP phases

As we introduce MBT in the UP, we also have to describe what impacts can
be expected on phases of the UP. The inception phase is not impacted by this
approach. Changes mainly concern the elaboration and the construction phase.
During those phases the system will grow from a prototype to a final product
and the associated tests artifacts will evolve with iterations. The elaboration
phase will produce a test model for basic functionalities, an adapter and an
adapter layer. By the end of the phase, those artifacts should be mature enough
and the adapter layer architecture should be precisely defined. The focus for this
phase is on the structure of the adapter layer that should be able to map the
implementation.

During the construction phase, artifacts will only evolve with the addition of
new functionality that might produce new question to be elicited.

Each iteration made within the elaboration and construction phase will aug-
ment the number of test suite. System testers and users will have a complete
testing framework and suitable tests.

Benefits of MBT will be the production of corrections in the analysis and
design model earlier in the process. Following iterations introducing them in
the implementation model. More important a defect might be found before the
effective execution of a test. Manual and generated test scripts, produced by the
entire process, will be executed in the transition phase. They will be included to
the beta-testing for the software.

3.2 Evolutions in the UP workflows

We consider a typical construction iteration of the UP as described earlier. We
propose to introduce the MBT activities right after the UP analysis workflow
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that is in the design process. From the MBT viewpoint, the first activity is the
production of a test model. This requires the analysis model to be available.

From this point on, we extend the UP by adding a new artefact for the design
workflow, so that two different kinds of model are produced. The first model is
the usual design model of the UP, while the second one is a test model. Both are
derived from the analysis model and the requirements documents. The design
workflow needs to be divided into two parallel processes. A development team
will take in charge the execution of the usual design process and a test team
will follow a model-based testing process. Those two point of view on the same
analysis model may lead to deviation between models. This will be the result of
a different or partial interpretation of specification present in the analysis model.

The unified process recommends assigning a team that will go through the
entire process for a given functionality, rather than splitting team for a given
activity. For testing activity it’s a good practice to have a dedicated team, first
because they must have specific skills and to be relevant a testing model must
be independent enough. Obviously a team will be made of workers endorsing
a role depending of the workflow or the phase. Team independence during this
workflow is crucial. Any question raised while modeling for test, should be elicited
by the system analyst or a stakeholder but not by the development team. A
good independence ensures a good accuracy of the generated tests. This parallel
process is shown in Fig. 2.

The next workflow in the UP is the implementation. The development team
will have to produce an implementation for the design model. Meanwhile the
test team will have to produce an adapter to interact with the SUT, that is to
implement the generated test cases into executable test scripts. Both develop-
ments will occur approximately at the same time and they must be carefully
coordinated. The interface must have been well defined for test scripts to inter-
act with the SUT. They are called control and observation points. They must
be available for the test team to apply scripts and get output from the SUT.

The test workflow needs to be described for each team with more details. This
workflow will gather, for the development team, all activities of usual testing;
that are: creating test case, evolving existing test scripts, running tests and
reporting any defects detected.

The goal of this workflow, for the test team, is to generate test scripts from
the adaptation layer and the generated test cases. Test cases have been generated
during the previous activity using a MBT test generator. Any changes made on
the model during the design phase will be integrated to the newly generated test
scripts.

The next activity will be the execution of those tests under the system.
Defects will not be reported directly as they can be produced by the model
or the implementation (or both). A control of the model must be done before
reporting the defect. If the failure is proved to be relative to the implementation,
then a good diagnostic can be expressed (issued from our test cases).
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Fig. 2. Packages produced by the UP extended with MBT
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3.3 Specializing an analysis model into a test model

We mentioned earlier that UML can be used as the modeling language for the
unified process. It can also be used to generate tests (e.g. [6]), various works have
been done [7],[8],[9],[10],[11] and they all have in common the subset of UML
used. Models should represent the system structure and its expected behavior.

The analysis model reflects the system structure with class diagrams. Those
diagrams contain classes, with attributes and operations, and relations between
classes. The system behavior will be captured by statecharts and sequence di-
agrams. The first one is made of states and transitions linking them. And the
second one expresses messages exchange between actors.

An analysis model may contain unnecessary informations (we probably does
not want to test every functionality of the system) and in the same time be
lacking of crucial informations in regards of our testing process. Those reasons
explicit why we need to specialize our analysis model into a new one, the test
model.

A test model derives from an analysis model. That means that classes and
relations (from class diagrams), states and transitions (from statecharts) will be
re-used in our test model. However those items cannot be used directly because
abstraction is a necessity when modeling for test on a real system [12]. This is
precisely the step 1 of the process described in section 2.2

Models should not contain every classes of the analysis model, only a subset
of classes representing the function to be tested should appear. But on the other
side, we need to add information to the test model. The goal of the model is
to produce test based on what is expressed. The analysis workflow does not
produce a model complete enough. A model should contain class operation with
a minimum amount of information about the system behavior. The description
can be placed on class diagrams, using pre- and post- conditions, or in state
machines using transition effects.

We suggest the use of OCL [13] to express those informations. OCL is a
formal language, non ambiguous and is part of the UML2.0 specification. Any
relevant information expressed in an informal way on the analysis model should
be specified using the OCL notation in diagrams used for tests.

4 Case Study: RTAXPM

To illustrate the need for specialization of an analysis model, we will introduce
in this section a case study. This is a tax record life cycle of the Geneva State
AFC (fiscal administration). The AFC is using RUP in combination with IBM
Rational tools, which gives us a nearly complete and well structured model of
the system.

4.1 A taxation life cycle

The functionality under test for this case study is a taxation life cycle. We only
focus on the analysis model, the life cycle is described using three kind of diagram
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Fig. 3. Use cases (extract from the model).
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in the AFC model: use case diagram (Fig. 3), statechart diagram (Fig. 4) and
class diagram.

Our purpose is to generate tests from this model. We will use all provided
diagrams to produce a model suitable for test. All informal informations will be
added on diagrams using OCL. Taking into account the type of diagrams and
the formal language used, its availability at the LIFC, we choose to generate test
cases with the MBT test generator LEIRIOS Test Generator for UML (LTG)1.
The test model have been made with Borland Together Designer 2006 for Eclipse,
then exported and processed by LTG.

Fig. 4. Taxation life cycle (extract from the model).

1 For more information about the model-Based testing tool LTG, see www.leirios.com



12 Fabrice Bouquet et al.

Fig. 5. Taxation life cycle for MBT.
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4.2 Specializing the AFC analysis model into a new test model

In this section we will describe all changes induced by the specialization.

– We add ’taxer ’ and ’group leader ’ classes. Those classes appear in the model
as actor (c.f. Fig. 3), and are issued of the security policy defined for the
application framework. This information was clarified by the use case dia-
gram and by an explanation of the project manager. In addition the use case
explicit that a group leader is the only taxer being able to stamp or suppress
a taxation. This will be introduce in the statechart diagram by new states,
representing a login and logout from the system.

– We transform informal notation such as ’user allowed to stamp’ and ’stamp
needed’, into formal notation:
First the ability for stamping is defined as an attribute of taxer class.
Added to this, the need for stamp is more complex to introduce. A use case
(not included in this paper) describes in an informal way, how to define if
a stamp is needed on a taxation. It depends on computation on a taxation
record data. This rises a problem of choice:
• we can either put computation rules in the model, it allows the use of

exact guard on transitions.
• or we can use a boolean-like value defining if a stamp is needed or not,

and leave the computational work to the adaptation layer.
We choose to use a boolean value. We place the following OCL guards in the
test model:
[taxer.allow_stamp=true or taxation.stamp_needed=false] and
[taxer.allow_stamp=false and taxation.stamp_needed=true]

– We retain all attributes of the analysis class in our ’taxation’ class. They will
not be all used for the test of the life cycle but can be useful for other test
generation.

– We add, in our ’taxation’ class, operation needed for the transition on the
statechart diagram. They will capture the behavior of our taxation life cycle.
It is described by a taxation status (e.g. ’in taxation’, ’controlled’ or ’to
stamp’). The taxation status will be our control point for the test oracle.

Figure 5 is the model produced by the specialization of an analysis model
into a test model.

4.3 Generated test cases for the taxation life cycle

For each test target, the LTG tool computes, if possible, one or more test cases.
We set up the tool with a depth-first algorithm and a search depth of 10. For our
case study, 16 test cases were produced covering the 9 operations of a taxation.

Figure 6 is a screen shot of a test case example for the ’stamp’ operation and
its oracle. This test case is transformed into a test script using the adapter. The
produced test script is then ran on the AFC framework through the adaptation
layer. The result returned by the framework is compared to the oracle which
gives the verdict of our test case.
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Fig. 6. Test cases for the stamp operation.

5 Conclusions

In this paper, we propose to extend the UP with MBT activities. This allow
the automatic generation of validation test cases from a test model that inherits
from the analysis model. Then, adapters are developed to be used for generating
executable test scripts from the abstract generated test cases.

Including MBT into a software engineering process will accelerate its adop-
tion, giving industrials a defined framework to introduce tests from models in
their development process. One of the great difficulty of MBT, so far, is to keep
the testing model alive. Specifications or design model evolve during a develop-
ment life cycle and the test model will be useless if not modified. This is where
the iterative feature of UP ensure that both models are at an identical state.

The chosen case study at the AFC gives us the first support for this approach,
but we need to explore links between analysis, test and design models.

This UP process extended with MBT has been used in the real context of
the development of a taxation system at the Geneva State (Switzerland).

The main benefits of the integration of MBT activities into the UP are the
reusability of the analysis models to develop the test model, and the automatic
generation of validation test cases for the considered application functionalities.
Moreover, the development of the test model, which implies to formalize the
expected behavior of the system under test, leads to a direct feedback on the
analysis models (and design models) that help their validation.

This integration of MBT activities in well recognized and used software de-
velopment process is a key issue for the dissemination of the MBT approach in
the software development practices.

Acknowledgments. The authors would like to thank the CTI and Mark Utting
for their participation.
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Abstract. The Model-Driven Architecture (MDA) approach for con-
structing software systems advocates a stepwise refinement and trans-
formation process starting from high-level models to concrete program
code. In contrast to numerous research efforts that try to generate exe-
cutable function code from models, we propose a novel approach termed
model-driven monitoring. On the model level the behavior of an opera-
tion is specified with a pair of UML composite structure diagrams (visual
contract), a visual notation for pre- and post-conditions. The specified
behavior is implemented by a programmer manually. An automatic trans-
lation from our visual contracts to JML assertions allows for monitoring
the hand-coded programs during their execution.
In this paper we present an approach to extend our model-driven moni-
toring approach to allow for model-driven unit testing. In this approach
we utilize the generated JML assertions as test oracles. Further, we
present an idea how to generate sufficient test cases from our visual
contracts with the help of model-checking techniques.

1 Introduction

Everyone who develops or uses software systems knows about the importance of
software qualities, e.g. correctness and robustness. However, the growing size of
applications and the demand for shorter time-to-market hampers the develop-
ment of high-quality software systems. To get a better handle on the complexity,
the paradigm of model-driven development (MDD) has been introduced. In par-
ticular, the Object Management Group (OMG) favored a model-driven approach
to software development and pushed its Model-Driven Architecture (MDA) [1]
initiative as well as standards such as the Unified Modeling Language (UML)
that provides the foundation for MDA.

However, the MDA is still in its infancy compared to its ambitious goals
of having a (semi-)automatic, tool-supported stepwise refinement process from
vague requirements specifications to a fully-fledged running program. A lot of
unresolved questions exist for modeling tasks as well as for automated model
transformations.

Nevertheless, in today’s software development processes models are an es-
tablished part for describing the specification of software systems. In principle,
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models provide an abstraction from the detailed problems of implementation
technologies. They allow software designers to focus on the conceptual task of
modeling static as well as behavioral aspects of the envisaged software system.
Unfortunately, abstraction naturally conflicts with the desired automatic code
generation from models as proposed by the MDA. To enable the latter, fairly
complete and low-level models are needed. Today, a complete understanding of
the appropriate level of detail and abstraction of models is still missing. Thus,
in today’s software development processes developers are normally building an
application manually with respect to its abstract specification with models.

In our work, we introduced a new modeling approach. We do not follow the
usual approach that models should operate as source for an automatic code gen-
eration step that produces the executable function code of the program. Rather,
we restrict the modeling task to providing structural information and minimal
requirements towards behavior for the subsequent implementation. We expect
that only structural parts of an implementation are automatically generated,
while the behavior is manually added by a programmer.

As a consequence it can not be guaranteed that the hand-coded implemen-
tation is correct with respect to the modeled requirements. Therefore, we have
shown in previous publications [2–4] how models can be used to generate asser-
tions which monitor the execution of the hand-coded implementation. Herewith,
violations of the modeled requirements will be detected at runtime and reported
to the environment. We call this novel approach model-driven monitoring.

Model-driven monitoring is based on the idea of Design by Contract (DbC)
[5], where so-called contracts are used to specify the desired behavior of an
operation. Contracts consist of pre- and post-conditions. Before an operation
is executed, the pre-condition must hold, and in return, after the execution of
an operation, it has to be guaranteed that the post-condition is satisfied. The
DbC approach has been introduced at the level of programming languages. For
instance, the Java Modeling Language (JML) extends Java with DbC concepts
[6]. JML assertions are based on Java expressions and are annotated to the source
code. During the execution of such an annotated Java program, the assertions
are monitored. An exception is raised as soon as a violation of the assertions is
detected.

With the concepts of visual contracts [2] we have lifted the idea of contracts
to the level of models. A visual contract allows for specifying a contract by
pairs of UML composite structure diagrams for the pre- and post-conditions. A
transformation of our visual contracts into JML allows for monitoring a system
that is implemented manually.

Now we want to extend our approach to allow for model-driven unit testing.
The visual contracts respectively the generated JML assertions are viewed as test
oracles to decide whether the results calculated by a hand-coded implementation
are correct. Additionally, we want to generate test cases from our models with
the help of model-checking techniques.

This paper is organized as follows: the following section gives an overview
of our approach. In Sect. 3 the visual contracts are explained. Section 4 shortly
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explains how to generate assertions from visual contracts. Section 5 describes
our testing approach on a conceptual level. In Sect. 6 we give an overview of
available tools that can be used for automation of our testing approach. In
Sect. 7 we discuss related work and finally we conclude the paper.

2 Enabling Model-Driven Unit-Testing with
Model-Driven Monitoring

Model-driven monitoring [2–4] constitutes a novel strategy for model-driven soft-
ware development beyond the classical idea of model-driven development cen-
tered upon the automatic generation of function code. Model-driven monitoring
lends itself to both model-driven and agile software development methods. We
enable model-driven monitoring by embedding visual contracts in a model-driven
software development process. Visual contracts are interpreted as models of be-
havior from which code for runtime assertion checking can be generated. The
visual contracts also specify the behavior which is then manually implemented
by programmers.

Test-driven development [7] is an important part of agile processes. E.g. Ex-
treme Programming (XP) [8], the most prominent of several agile software devel-
opment processes, emphasizes the test-first approach. When handling a program-
ming task, programmers always begin writing unit tests. This test formalizes the
requirements. If all tests run successfully then the coding is complete. To accent
the agile part of our model-driven monitoring approach we want to support the
test-driven development by enabling model-driven unit testing. Therefore, be-
side the generation of runtime assertions we want to automatically generate test
cases from our models. Figure 1 shows our model-driven software development
process enabling model-driven monitoring and model-driven unit testing.

On the design level, a software designer has to specify a model of the system
under development. This model consists of class diagrams and visual contracts.
The class diagrams describe the static aspects of the system. Each visual contract
specifies the behavior of an operation. The behavior of the operation is given in
terms of data state changes by pre- and post-conditions, which are modeled by
a pair of UML composite structure diagrams as explained in Sect. 3.

In the next step, we generate code fragments from the design model. This
generation process consists of two parts. First, we generate Java class skeletons
from the design class diagrams. Second, we generate JML assertions from every
visual contract and annotate each of the corresponding operations with the gen-
erated JML contract. The JML assertions allow us to check the consistency of
models with manually derived code at runtime. The execution of such checks is
transparent in that, unless an assertion is violated, the behavior of the original
program remains unchanged.

Then, a programmer uses the generated Java fragments to fill in the missing
behavioral code in order to build a complete and functional application. His pro-
gramming task will emanate from the design model of the system. Particularly,
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Fig. 1. Overview of the testing approach

he will use the visual contracts as reference for implementing the behavior of
operations. He has to code the method bodies, and may add new operations to
existing classes or even completely new classes, but he is not allowed to change
the JML contracts. If new requirements for the system demand new function-
ality then the functionality has to be specified with visual contracts before the
programmer can start programming. Using our visual contracts this way in a
software development process resembles Agile Development and Extreme Pro-
gramming approaches, where a developer has to specify a set of test cases before
implementing the code.

When a programmer has implemented the behavioral code, he uses the JML
compiler to build executable binary code. This binary code consists of the pro-
grammer’s behavioral code and additional executable runtime checks which are
generated by the JML compiler from the JML assertions. The manual implemen-
tation of a programmer leads to system state changes. The generated runtime
checks monitor the pre- and post-conditions during the execution of the system.
Thus, we support model-driven monitoring of implementations by transforming
our visual contracts into contracts in JML.
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To further integrate agile respectively extreme programming approaches in
our model-driven software development process we additionally want to integrate
model-driven unit testing in our development process. Therefore, we have to
address the following three problems of model-driven testing [9]:

1. the generation of test cases from models,
2. the generation of a test oracle to determine the expected results of a test,
3. the execution of tests in test environments.

The basic idea of our testing approach is that the specification of an operation
by a pre- and post-conditions (visual contract) can be viewed as a test oracle
[10, 11] and runtime assertion checking can be used as a decision procedure for a
test oracle. That means the runtime checks generated by the JML compiler can
be used as test oracles. Thus, our visual contacts can be viewed as test oracles
since the JML assertions are generated from our visual contracts. On the code
level, this idea is supported by the tool JMLUnit which combines JML with the
popular unit testing tool JUnit for Java. Still, we need to answer the problem
of how to generate test cases from models. Therefore, we want to combine well-
known testing techniques for the generation of test input parameters and model
checking to be able to create concrete system states. The idea how to create test
cases is described in detail in Sect. 5.1.

3 Modeling with Visual Contracts

We show how to specify a system with visual contracts by the example of an
online shop. We distinguish between a static and a functional view.

UML class diagrams are used to represent the static view of a system spec-
ification. Figure 2 shows the class diagram of the sample online shop. We use
the stereotypes control and entity as introduced in the Unified Process [12].
Each of these stereotypes expresses a different role of a class in the implemen-
tation. Instances of control classes encapsulate the control related to a specific
use case and coordinate other objects. Entity classes model long-lived or per-
sistent information. The stereotype key indicates key attributes of a class. A
key attribute is a unique identifier for a set of objects of the same type. The
control class OnlineShop is connected to the entity classes of the system via
qualified associations. A rectangle at an association end with a qualifier (e.g.
productNo) designates an attribute of the referenced class. In combination with
the key-attributes of a class, the qualifier allows us to get direct access to a
specific object.

Class diagrams are complemented by visual contracts that introduce a func-
tional view integrating static and dynamic aspects. Visual contracts allow us to
describe the effects of an operation on the system state of the system. Thus, for
our visual contracts we take an operation-wise view on the internal behavior.

In the following, we want to explain our visual contracts by two examples.
The operation cartCreate of the control class OnlineShop creates a new cart.
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Fig. 2. Class diagram specifying static structure of online shop

Fig. 3. Visual contract for operation cartCreate

Figure 3 shows a visual contract that describes the behavior of the operation. The
visual contract is enclosed in a frame, containing a heading and a context area.
The keyword vc in the heading refers to the type of diagram, visual contract in
this case. The keyword is followed by the name of the operation that is specified
by the visual contract. The operation name is followed by a parameter-list and
a return-result if they are specified in the class diagram. The parameter-list is
an ordered set of variables and the return-result is also a variable. The variables
of the parameter-list and the return-result are used in the visual contract.

The visual contract is placed in the context area. Structurally, a visual
contract consists of two graphs, representing the pre-condition and the post-
condition of an operation. The graphs are visualized by UML composite struc-
ture diagrams [13]. Each of the graphs is typed over the design class diagram. The
semantics of our visual contracts is defined by the loose semantics of open graph
transformation systems [14]. The basic intuition for the interpretation of a visual
contract is that every model element, which is only present on the right-hand side
of the contract, is newly created, and every model element that is present only
on the left-hand side of the contract, is being deleted. Elements that are present
on both sides are unaffected by the contract. Additionally, we may extend the
pre- or post-condition of a visual contract by negative pre-conditions (i.e., neg-
ative application conditions [15]) or respectively by negative post-conditions. A
negative condition is represented by a dark rectangle in the frame. If the dark
rectangle is on the left of the pre-condition, it specifies object structures that
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Fig. 4. Visual contract for operation cartAdd

are not allowed to be present before the operation is executed (see Fig. 4). If the
dark rectangle is on the right of the post-condition, it specifies object structures
that are not allowed to be present after the execution of the operation.

The contract as described in Fig. 3 expresses that the operation cartCreate
can always be executed, because the pre-condition only contains the model ele-
ment self, i.e. the object executing the operation. As an effect, the operation
creates a new object of type Cart and a link between the object self and the
new object of type Cart. Additionally, the object c:Cart is the return value of
the operation cartCreate as indicated by the variable c used in the heading.

Figure 4 shows a more complex contract specifying the operation cartAdd.
This operation adds a new CartItem, which references an existing Product, to
an existing Cart. In contrast to the visual contract of Fig. 3, the variables of the
parameter-list and the return-value are now used to specify values of attributes
of different objects. For a successful execution of the operation, the object self
must know two different objects with the following characteristics: an object of
type Cart that has an attribute cartId with the value cid, and an object of
type Product that has an attribute productNo with the value prNo. The concrete
argument values are bound when the client calls the operation. The Cart object
is reused in the negative pre-condition (compare object identifiers). The negative
pre-condition extends the pre-condition by the requirement that the Cart object
is not linked to any object of type CartItem that has an attribute productNo
with the value prNo. This means, it is not permitted that the product is already
contained in the cart. As a result, the operation creates a new object of type
CartItem with additional links to previously identified objects. The return value
of the operation is the content of the attribute cartItemId of the newly created
object.
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4 Translation to JML

After describing the modeling of a software system with visual contracts, we now
present how the model-driven software development process continues from the
design model. A transformation of visual contracts to JML constructs provides
for model-driven monitoring of the contracts. The contracts can be automati-
cally evaluated for a given state of a system, where the state is given by object
configurations. The generation process as well as the kind of code that is gener-
ated from a class diagram and the structure of a JML assertion that is generated
from a visual contract are described in detail in [2, 4]. Here we only describe the
transformation more generally and from a methodical perspective.

4.1 Transformation of Class Diagrams to Java

Each UML class is translated to a corresponding Java class. Attributes and
associations are complemented by the corresponding access methods (e.g., get,
set). For multi-valued associations we use classes that implement the Java inter-
face Set. Qualified associations are provided by classes that implement the Java
interface Map. We add methods like getProduct(int productNo) that use the
attributes of the qualified associations as input parameters. Operation signatures
that are specified in the class diagram are translated to method declarations in
the corresponding Java class up to syntactic modifications according to the Java
syntax.

4.2 Transformation of Visual Contracts to JML

For each operation specified by a visual contract, the transformation of the con-
tract to JML yields a Java method declaration that is annotated with JML asser-
tions. The pre- and post-conditions of the generated JML assertions are interpre-
tations of the graphical pre- and post-conditions of the visual contract. When
any of the JML pre- and post-conditions is evaluated, an optimized breadth-
first search is applied to find an occurrence of the pattern that is specified by
the pre- or post-condition in the current system state. The search starts from
the object self (object this in Java syntax) which is executing the specified be-
havior (compare [16]). If the JML pre- or post-condition finds a correct pattern,
it returns true, otherwise it returns false.

5 Test Case Generation and Test Execution

In the previous sections we explained how a software designer develops a design
model and how Java class skeletons and JML assertions can be generated from
them. We also explained how a programmer can complete the generated code
fragments to build a complete executable application. After these steps we want
to test our application. In Sect. 2 we explained the three tasks of model-driven
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testing. In this section we will explain how we handle the first and the third task,
i.e. the generation of test cases and the execution of a test. The second task (the
generation of a test oracle) is described in Sect. 4 since we can interpret the JML
assertions as test oracles.

Similar to classical unit-testing, our test items are operations. The behavior
of an operation is dependent of the input parameters and the system state. Thus,
a test case has to consider the parameter values of an operation and a concrete
system state.

5.1 Test Case Generation

A test case for an operation consists of concrete parameter values and a concrete
system state. We can generate a test case for an operation from our model in
three successive steps. In the following, we explain how to generate a sample test
case for the operation cartAdd (Fig. 4). Figure 5 illustrates the three steps.

In the first step, we generate values for the input parameters of an operation
as specified in the class diagram. In Fig. 5 we generated the parameter values for
the operation cartAdd randomly. For the parameter cid of type String the value
“abc” is generated. The parameter prNo of type String gets the value “def”
and the variable num of type Integer gets the value “1”. Beside a the random
generation of input parameters, we could also use other techniques for test data
generation, e.g. equivalence-class partitioning or boundary value analysis (see
e.g. [17]).

To generate a sufficient system state for testing, we have to execute two
further steps. Since the visual contracts specify system state requirements, we
use them as source for generating the system states. Therefore, we initialize the
pre-condition of a visual contract with the parameter values generated in step
one. The variables in the parameter-list are used to restrict the attribute values
of objects in the pre-condition as explained in Sect. 3. Thus, the initialization
gives an object structure. In this object structure some of the attributes have
concrete values. Figure 5 shows how the attributes productNo and cartId of
the classes Product and Cart are initialized with the parameter values of step
one according to the pre-condition in Fig. 4. It is important to notice that this
object structure describes a system state only partially.

In the last step of our test case generation, we have to find out how to
generate a system state which contains the object structure found in step two.
Due to the fact that the object structure in the previous step defines a system
state only partially, we cannot just build a system state by creating the known
objects and attribute values. Such a system state would be incomplete and it
would be artificial in a sense that the application would never create such a
system state at runtime. Additional objects or attribute values can be created
during the execution of the systems at runtime and these may have side-effects
on the execution of an operation. Thus, tests should work on realistic system
states. To avoid these artificial system states it would be useful to build a system
state by using the control operations of the system itself. We assume that each
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Fig. 5. Three steps of test case generation

operation call leads to a state change of the system. Thus, we have to find a
sequence of operation calls that starting from the initial state lead to a sufficient
system state which contains the object structure found in step two. As a visual
contract describes the system state change of an operation, we can use these
contracts to compute all possible states of the system. Therefore, we consider a
system state as a graph and the visual contracts constitute production rules of a
graph transition system. Figure 5 illustrates how we want to generate a transition
system. Initially the system state comprises just an instance (self) of the con-
troller class OnlineShop. Executing, e.g., the operation cartCreate makes the
in Fig. 3 specified changes on the system state. Thus, a new object of type Cart
is generated and linked to the control object self. Executing further operations
brings the system to a state sv which contains the object structure generated
in step two. Knowing all visual contracts and an initial state, we can compute
the graph transition system and search for a production sequence that creates a
system state which contains the object structure found in step two. These com-
putations can be done automatically with model checking techniques [18]. The
computed production sequence directly refers to an operation sequence which
brings the system state to some desired state containing the object structure
computed in step two. If no sufficient production sequence is found in the graph
transition system (the searched object structure cannot be constructed using the
existing operations), our test case generation approach has to backtrack to step
one and generate other test data.

5.2 Test Execution with Embedded Oracles

After test cases are generated, the test execution can start. Test execution com-
prises two main steps as shown in Fig. 6. First, the operation sequence deter-
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Fig. 6. Run-time behavior of test execution

mined by the test case generation must be executed in order to set the system
state. Second, the operation under test is called with the test input parameters
also generated by the test case generation.

The embedded assertions lead to a run-time behavior of an operation call as
shown in Fig. 6. When the operation under test is called, a pre-condition check
method evaluates the method’s pre-condition and throws a pre-condition viola-
tion exception if it does not hold. If the pre-condition holds, then the original,
manually implemented operation is invoked. After the execution of the origi-
nal operation, a post-condition check method evaluates the post-condition and
throws a post-condition violation exception if it does not hold. If the embed-
ded assertions throw an exception then the implementation does not behave
according to its specification. Thus, we have found an error.

6 Tool Support

Most of the steps of our approach can be supported by tools. In former pub-
lications we have reported on our Visual Contract Workbench, an integrated
development environment for using visual contracts in a software development
process [19]. This development environment allows software designers to model
class diagrams and specify the behavior of operations by visual contracts. It
further supports automatic code generation as described in Sect. 4.

The most challenging task of our test generation approach is finding an oper-
ation sequence for setting a system state as explained in Sect. 5.1. This task can
be automatically solved by model checking tools. A candidate for our purposes
is GROOVE [20], a model checker for attributed graph transition systems. For
that, we consider to interpret our visual contracts and our test inputs as graph
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transformation rules in GROOVE. A reachability analysis can show whether a
system state containing the object structure in the test input can be reached in
the graph transition system. If this is true, we expect GROOVE to supply us
with a witness path, representing the desired operation sequence.

The test execution can be implemented by a test driver (see Fig. 6). The
test driver will execute the operation sequence computed by the model checker
before the actual test of the operation under test can begin. In the context of
JML, we can use the JMLUnit tool [21] for this purpose. This tool combines
JML with the popular unit testing tool JUnit for Java. JMLUnit views a JML
assertion of an operation by pre- and post-conditions as a test oracle. A runtime
assertion checker can then be used as the decision procedure for the test oracle.

7 Related Work

Using models for test generation is intensively studied by the model-driven test-
ing community [22, 23], especially for black-box software testing. To the best of
our knowledge using visual models for unit-testing is a new idea. However using
contracts for testing purposes is a well-known technique (contract-based testing
[24, 25]). We will mention here a few recent publications in this area and show
the differences to our approach.

A recent work [25] explores a fully automatic testing of Eiffel programs with
DbC. The authors developed a tool suite AutoTest which randomly generates
test cases. A major disadvantage of the approach is that for test case generation
they do not take the pre-conditions into account. However, the authors state in
[25] that they are currently working on this problem.

The Korat tool [26] uses JML specifications for test case generation for Java
programs and handling the oracle problem. The contribution of our approach
compared with this approach is that we lift the model abstraction one level
higher, where our approach supports behavioral specification in the design phase
by using UML notation.

In [27] graph transformation rules are used for test case generation in the con-
text of web services. Test cases are generated from the behavioral specifications
and executed via a pre-defined testing interface to ensure the correct funtioning
of the web service which is considered as a black-box system. A clear statement
about setting a sufficient system state in a black-box system is missing in this
work.

8 Conclusion

We have developed an approach that lifts the Design by Contract (DbC) idea,
which is usually used at the code level, to the model level. Visual contracts are
used as a specification technique. They are used to specify system state trans-
formations with pre- and post-conditions. Pre- and post-conditions are modeled
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by UML (composite) structure diagrams. By using UML, we build on a well-
known standard that is predominantly used in today’s model-driven development
processes. Further, we presented how to use the visual contracts in a software
development process. A translation of the visual contracts into the Java Model-
ing Language, a DbC extension for Java, enables the model-driven monitoring.
To support our model-driven monitoring method, we provide a visual contract
workbench that allows developers to coherently model class diagrams and visual
contracts. Further the workbench supports automated code generation.

In this paper, we have shown how we want to extend our approach with
model-driven unit testing. In our testing approach, a test case consists of pa-
rameter values and a concrete system state. The visual contracts – respectively
the generated JML assertions – are viewed in our approach as test oracles to
decide whether a manual implementation is correct according to its specification.

In future work we will have to concretize our model-driven unit testing ap-
proach and extend our visual contract workbench with testing facilities.
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Abstract. The link between an object’s class specifications and UML
statechart is rather informal and poses consistency issues during software
evolution. We address this issue by proposing a connection between class
diagram and statechart in a lock-step fashion, which leads to a coherent
design for better development, testing, and maintenance of the software
system. In this paper, we describe an approach for generating a statechart
for an object from its method contracts. We then show how the generated
object statechart can be used for performing automated testing at unit
level. We illustrate the approach using a simple example and discuss its
effectiveness as a V&V step during software evolution.

1 Introduction

Models are necessary for performing effective V&V of software artifacts. A model
is usually an abstract, partial representation of the software artifact’s desired
behavior. Any V&V done on this model is on the same level of abstraction
as the model. The results of the V&V may not necessarily equally applicable
for the software artifact and greatly affected by the difference of the two levels.
Ideally, one should use the program code itself to identify and verify its behavior.
But there are serious limitations in identifying and applying automated V&V
to what represents a ‘behavior’ of the object in the code thereby requiring an
abstract model for suppressing, or ignoring, inessential details while focusing on
the important, or essential, details.

The object model is the common computational model shared by UML and
object-oriented programming languages. The object model views an executing
program as a collection of communicating objects where individual objects are
responsible for maintaining part of a system’s data and for implementing some
aspect of its overall functionality. This abstraction provides us a way to deal with
the objects as ”black boxes” whose details of the underlying implementations
are hidden to the users (consumers) of those objects, and all interactions take
place through their well-defined interfaces.

An object, in its own right, represents an independent, concurrently execut-
ing, and co-existing software artifact. This makes reliability even more impor-
tant in object-oriented systems than elsewhere. Meyer’s ”Design by Contract”
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[1, 2] approach acknowledged the problem and advocated the use of suitable
constraints in the design. Helm et al. [3] introduced ‘Contracts’ for specifying
behavioral compositions and obligations on participating objects. This followed
by further investigations done by Jezequel et al. [4] and development of formal
approaches for ’contract’ based designs [5]. Use of OCL [6] constraints on various
UML diagrams is now well accepted and commonplace.

State models like finite state machines, statecharts, etc, on the other hand,
have been used as representations of dynamic behavior of the objects/compo-
nents and are very effective in performing verification and validation activities
for them. The state models have been used for requirements validation [7] and
systematically generating tests[8–10]. Briand et al., in many studies [11–13],
demonstrated the effectiveness of test cases obtained using state based coverage
criteria, proposed originally by Offutt et al. [14] and Binder [10].

Efforts have been made to connect other models with state diagrams. Whit-
tle et al. [15, 16] demonstrated how a set of scenarios, along with the notion of
domain theory, can be converted into objects’ statecharts which helps in iden-
tifying the behavior of various components involved in the scenarios. Similar
approaches have also been formulated by Makinen et al. [17, 18] and Uchitel et
al. [19].

From these studies it has become clear that state models, like UML stat-
echarts are very effective in verification and validation activities of software
objects. An important issue then arises is how to obtain these state models
so as verification and validation can effectively be performed, and perhaps, be
automated.

The main objective of this work is to perform effective V&V by inspecting the
statechart generated from an object’s method contracts for any incorrect behav-
ior and then generation of automated unit test cases. From the method contracts
expressed as OCL constraints [6] and the knowledge of problem domain, we iden-
tify a set of key domain variables important to the current context. Given this
configuration, a constrained method of a class can be viewed as representing a
transition in a state space constituted by the set of domain variables. Starting
with an initial state configuration (typically emulated by a constructor of that
object), we searched for possible method invocations at each generated state
iteratively and obtained a statechart. The generated statechart is inspected for
incorrect behavior and then used for automated unit test generation (including
test-oracles generation) to determine if the implementation produced the correct
output during testing.

The paper is organized as follows: we first present elements of our model in
Section 2. Then we describe our approach and algorithm for generating state-
charts from annotated class diagrams in Section 3. We illustrate the statechart
generation approach using an example for in Section 4 and performing V&V us-
ing the generated statechart in Section 5. We discuss the utility and limitations
of our approach in Section 6 and draw conclusions in Section 7.
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2 Underlying models

We first present an object’s contractual model representing the object’s contracts
followed by our abstract state model for the object.

2.1 The Constrained Class Diagram

A contract for an object is the set of constraints typically associated with its
method invocations. An item in the contract can be:

– A pre-condition to a method which is a restriction that must be true at the
moment that the method is going to be executed.

– A post-condition to an method which is a restriction that must be true at
the moment that the method has just ended its execution.

– An invariant which is a restriction that must be true before as well as after
a method invocation.

Without the loss of generality, we assume an invariant as an integral parts
of respected method’s pre- and post-conditions. An object’s contractual model
is then its UML class diagram augmented with method contracts expressed as
OCL constraints[6].

2.2 The Abstract State Model

Typically, an object’s state is characterized by a specific value assignment of the
object’s variables in their respected domains. But even for a trivial object with
just one integer or floating-point variable, the problem of state explosion makes
it intractable to analyze such behavior. This problem can be effectively tackled
by the notion of ‘state variables’ with ‘abstract states’ which facilitates such
variables to take abstracted out values over their domains. This requires extra
effort to identify such state variables and their possible assignments, but provides
an opportunity to carry out an effective behavioral analysis which otherwise was
not possible.

Formally, we abstract out various data types to be used as state variables, in
the following manner:

– Quantifying data types like integer, float, double, etc. are to be mapped
into a finite set of disjoint partitions over its valid state space, e.g., an in-
teger state variable X is mapped to three abstract states x < 0, x = 0, and
x > 0. A quantified state variable X, in general, can take five possible as-
signments: bounded range (e.g. a <= X <= b), unbounded-ve (e.g. X < a),
unbounded+ve (e.g. X > a), and a specific value (e.g. X = a).

– Boolean and enumeration data types are considered inherently abstract.
– Object references x are mapped either to the abstract state x = null, or to

the abstract state x instance Of C for each class C of the object referenced
by x.



Statechart Generation from Contracts 33

By abstracting out the state dependent variables, a state in the problem
domain is the assignment of those state variables with abstract values. For ex-
ample, a bounded list with maximum size as ‘maxElement’ is identified by one
state variable ‘size’, which can take theoretically five abstract values: < 0, = 0,
> 0 AND < maxElement , = maxElement , and > maxElement . Two of the five
values, i.e., < 0 and > maxElement , are representing invalid states and hence
should result in exception throws. Hence the bounded list will be represented by
three valid abstract states: = 0, > 0AND < maxElement , = maxElement and
two invalid states: < 0 and > maxElement .

Thus, the state space constituted by n-state variables si( i ∈ [n]), each with
ri( i ∈ [n]) abstracted-out values, can be thought of an n-dimensional hyperspace
partitioned into Πri (i ∈ [n]) hyper-cubes, each of which represent an abstract
state of the object. For the present state of an object, the constraints on the state
variables at a method invocation will decide the resulting valid and invalid states
of the object. We developed a rule-based search approach for possible method
invocations at a given state and obtaining resulting states which is described in
the following Section.

3 Generating the Statechart

Our approach uses an annotated UML class diagram in which class methods1

have pre and post-condition constraints expressed in OCL. The class diagram
annotated with method constraints may be obtained as a result of detailed design
activity during software development or the required method level constraints
can be attached with desired domain information. Then we choose a state vec-
tor Sd , whose elements are important domain variables, typically included in
pre and post-conditions of the constrained object’s methods. Assuming an ini-
tial Sd variables’ value assignments Sd(0) as the initial state configuration for
the generated statechart, we search for object methods whose pre-conditions
are consistent with current state configuration. These methods represent state
transitions from the current state which is then combined with methods’ post-
conditions to obtain resulting states. The generated statechart is then inspected
to find various possible anomalies in the object’s behavior which are used to
refine the method contracts for the object. First, we introduce some terms used
in this paper.

3.1 Some Definitions

First consider some terms used in our study:

– Domain Method Set (Md): is the set-union of all constrained methods of the
object of the specified domain D .

1 Typically, there are some methods in a class which are of the type getter or observer
methods. We exclude them in our approach of statechart generation for better effi-
ciency, as they do not play any role in the behavior of the specified object.
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– A Domain Variable di : is a variable appearing in a pre- and/or post-conditions
and/or invariant of a method in Md .

– Domain Variable Set (SD): is the set-union of di .
– State Vector (Sd): is a selected subset of the domain variable set Sd ⊆ SD ,

obtained by identifying some key domain elements of the domain variable
set SD of the domain D of interest.

– A State Configuration (Sd(k)): is a specific assignments to the variables of
state vector Sd for some abstract state k , characterizing that state.

3.2 Identification of Key Domain Variables

Our approach is based on identifying key domain variables set (Sd), each element
of which typically represents an important behavior aspect in some context. For
example, the variable ‘size’ in a bounded list plays important decision roles
in various operations of that bounded list. In the most straightforward case,
for the sake of arguments, SD may be chosen as (Sd) but a wise selection of
domain variables from SD may increase the efficiency (i.e. reduce the efforts
requirements) of the whole process.

3.3 State Generation

Having identified (Sd), we obtain an initial state configuration Sd(0) typically
specified in a ‘constructor’ method of the object. Using Sd(0) as the initial state
for the given object and the domain method set (Md), we search all the methods’
pre-conditions to find the set of method Md(0), which can be invoked at initial
state 0, i.e. these are the methods whose pre-conditions hold in Sd(0). The set
Md(0) represents all possible transitions (i.e. method invocations), from initial
state configuration represented by Sd(0) to some other state i represented by the
state configuration Sd(i), obtained according to post-conditions of the methods
in set Md(0). This procedure is repeated for each newly obtained state configu-
rations Sd(i) until all such states are accounted for. States with no method can
be invoked at state i . Then the state i will be a final state of the system. An end
state of the generated statechart is a state which does not has a transition(i.e.
method invocation) to any other state of the object.

To determine, whether a method can be invoked in a given state, we match
the pre-condition of that method with the current state configuration. A state
configuration is inherently represented in DNF for its constituent state variables
and their values assignments. After a match, we determine resulting state by
combining the current state configuration with the method post-conditions. To
facilitate this, we made following assumptions:

– The pre- and post-conditions are represented in DNF form, so that we can
separately analyze each conjunct of the DNF and result can then easily be
combined.

– The domain variables which are not state variables, are specified with their
range constraints.
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Criteria for Method Invocation at a State A specific state can be simply
represented as a conjunction of its state variables, assigned with specific/abstracted-
out values. Whether a particular method can be invoked in a given state is de-
termined by state-pre-condition match for that method. For state-pre-condition
match for a method, we match each literal of a conjunct in the method’s pre-
condition with corresponding state variable for an overall decision. As we shall
see that some conjuncts may result in conditional matches, which form the con-
dition part of that method call and represented as conditional transitions in the
resulting state diagram.

Matching of most of state variables of the type boolean, enumerated, and
object is rather straight forward, except, the case of quantified variables like
integer, float and similar. Here we resolve the problem by exclusively creating
a rule base for the matching. A literal, in a method’s pre-condition, can take
following general form:

< expr1 > op < expr2 >

where < expr1 > can be a single quantified variable X or an arithmetic ex-
pression containing quantified variables which can be evaluated as X . < expr2 >
can be a constant or an arithmetic expression containing quantified variables
which may or may not be state variables and op is an algebraic operator (<
,<=,=, >, >=, <>). Assuming < expr1 > as X, and < expr2 > as Y, i.e., some
quantified variables, the two cases for the above literal are handled as follows:

1. Y is a constant. Figure 1 shows the rule base2 for determining whether
a state-pre-condition match holds (or does not hold) in this case which is
represented by T (or F) at the leaf nodes. Please note that a successful match
may specify a condition to be true and therefore will appear as a conditional
transition in the statechart.

2. Y is an arithmetic expression. We evaluate the expression for the constraints
given and thus may obtained four possibilities for Y as stated above for
bounded range (e.g. c <= Y <= d), unbounded-ve (e.g. Y < c), un-
bounded+ve (e.g. Y > c), and a specific value (e.g. Y = c). Corresponding
rule base for this case is given in figure 2.

Criteria for obtaining Resulting State Once an affirmative decision regard-
ing a class method invocation in a given a state configuration is made, its post
conditions are evaluated and combined with the state to obtain next state con-
figuration. For this, we determine changes in state variables’ values due to the
method invocation. Here we describe the mapping of a quantified state variable
to its possible values assignments as rest of the variable types can trivially be
mapped to their respected categorizations.

There are primarily three types of OCL post-condition expressions which
typically manipulate quantified variables. These expressions are handled as given
2 Only a part of the rule base is shown here for illustration
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At State: 

Pre: 

X = B(a,b)  X = S (a) X = UB-ve(<a) X = UB+ve(> a) 

 X > Y X = Y 
 X > Y 

X = Y 
X > Y 

X = Y 

X: a quantified variable 
Y: a Constant 

 X >Y 
 X = Y 

 b>= Y >= a 

Y < a 

Y > b 

T[X < b] T[bounds] 

F 

b >= Y >= a 

Y < a 

Y > b 

T F F 

Y >= a Y< a 

F T[X=a] 

Y = a 

Y <> a 

T F 

Y >= a Y < a 

F  T[X > Y] 

Y >= a Y < a 

F T 

Y <= a 

Y > a 

T T[X>Y] 

Y > a 

T F 

Y <= a 

B – Bounded 
S – Specific 
UB – Un-bounded 
[bounds] – [X<=b &  
  X>= a] 

Fig. 1. Handling quantified state variables for state-pre-conditions match (Y is
a constant)

  

 X = B (a,b)   X = S (a)  X = UB-ve(< a)  X = UB+ve (> a) 

 X > Y 
X = Y 

X > Y 
 X = Y 

 X > Y 
X = Y 

X: quantified state variable 
Y: quantified state variable 
 

 X > Y 
 X = Y 

Y = B(c,d) 

At State: 

Pre: 

T 

a > d 

F 

 c> b 

T[ X>Y] 

 other 

Y = S (c) 

T 

 a >=c 

T[ X>Y] 

 other 

Y= UB-ve(< c) Y = UB+ve(> c) 

F 
 

 c>= b 

T[ X>Y] 

 other 
B – Bounded 
S – Specific 
UB – Un-bounded 
other – other cases  

Fig. 2. Handling quantified state variables for state-pre-conditions match (Y is
an arithmetic expression)
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Given an annotated class diagram, domain method set Md and a state vector Sd for the problem domain with an 
initial state configuration Sd(0) 
 
1. create and initialize a Directed Acyclic Graph (DAG) G with single node Sd(0) 
2. create a empty Queue Qi , and insert node Sd(0) 
3. while Q is not empty do (repeat steps 4 – 5 ) 
4.     get a state configuration si   deQueue(Qi) ;  // si  hold current state configuration 
5.     for all methods mi  Œ Md do 
     preSet    getPreConditions(mi) ; 
     if  preSet Õ si   then         // application of rule base for method invocation 
    postSet    getPostConditions(mi) ;   
    PostStateSet = si ;     // computing resulting set of states 
    for (each post Œ postSet and not post isInstanceOf if-then-else construct ) do 
   create a next state configuration sj   combine(PostStateSet ,post) 
   addState (PostStateSet, sj ) 
    create a transition leveled as mi  from si  to each sj  Œ PostStateSet  with guard conditions as   
   obtained 
    updateG();  
    if (post isInstanceOf if-then-else construct )  then 
   for each (if-then-else branch) 
    create a new choice state sc; 
    create a transition leveled as mi  from each si Œ PostStateSet  to sc  and 
    create two outgoing transitions for both if and else conditions with if-     
     predicate p evaluated as TRUE  and FALSE  as guard conditions, to two    
     states sj and sk, respectively, such that sj   combine(PostStateSet ,p=TRUE)  
     and sk   combine(PostStateSet ,p=FALSE) 
    addState (PostStateSet, sj ) ;  
    addState (PostStateSet, sk );   
    updateG();    
  updateQ( PostStateSet );      
7. Mark end states ( state s with outGoingEdge(s) = « ) in G                
8. return G 

Fig. 3. Algorithm for generating object state model from annotated class dia-
gram

below where X is a single quantified state variable (or an arithmetic expression
containing quantified state variables in the 3rd case below):

1. X ← X • pre op < expr > indicating whether the method is additive or
subtractive for X depending upon arithmetic operator op. Here we follow a
conservative approach where next state value for X is mapped to all possible
higher abstract state value assignments of X including the current one, in
the former case and, to all possible lower abstract state value assignments
of X including the current one, for the later case.

2. if − then − else statement will result into a separate state for each if/else
block. Such method invocations are modeled by a choice state in the resulting
statechart with method name appearing on incoming edge to choice state
and the two outgoing transitions from the choice state having guards as
if −condition−predicate evaluated as TRUE and FALSE , respectively. The
conditions and resulting block expressions are similarly evaluated to obtain
resulting states.

3. X op < expr > where < expr > can be evaluated determine whether it
represent a specific value which can be mapped directly to resulting abstract
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state value assignment for X , or a range. In either case, it represent next-
state constraints on the possible assignments a state variable may take.

The algorithm for automated statechart generation from an annotated class
diagram is presented in Figure 3. Please note that a generated statechart corre-
sponds to a specific initial state configuration Sd(0), which can be inferred from
a ‘constructor’ of the object. If the object may be instantiated in multiple ways
(i.e. the case with overloaded constructor), then for each possible instantiation,
i.e. a different Sd(0), a separate statechart is generated. In that case, an overall
statechart for the object is obtained by:

– combining the generated constructor-specific statecharts using a pseudo-
start state having a separate transition for each constructor-method leading
to the constructor-specific initial state configuration Sd(0).

– combining the common states among the generated constructor-specific stat-
echarts.

3.4 Guard-Conditions for Statechart Transitions

There are two instances where a statechart transition, i.e. a method invocation
at a particular state, is to be augmented with a desired guard-condition.

– Firstly, when we explore the possibility of the method to be invoked at
that state (ref to Section 3.3), the rule base may return a condition for the
transition.

– The other instance is constituted by a method invocation resulting in gen-
eration of more than one state 3.3, each of which requires an appropriate
guard-condition for the relevant transition in the statechart. These guard-
conditions can easily be obtained by the partitioning information of the state
variables.

A method involved in both the two instances will have an over-all guard-
condition which is a logical AND of the two separately obtained guard-conditions.

4 An Illustrated Example: Class CoinBox

In this section, we demonstrate our approach using a class CoinBox in a Vending
Machine domain. The CoinBox class is a simple vending machine which takes
minimum two quarters to deliver a drink. Some quantity of drinks is to be
inserted when the vending machine is empty. It also allows user to get her money
back without delivering the drink. The class specifications with OCL constraints
are given in Figure 4.

We generate statechart for the class CoinBox using our algorithm. First,
identify a state configuration Sd as represented by three variables with possible
assignments as given below



Statechart Generation from Contracts 39

Class CoinBox { 
int curQtr, quantity, totalQtrs 
boolean allowVend 
 
addQtr( )  // adding a quarter in the machine 
 pre : quantity > 0; 
 post  : curQtr  ≠ curQtr@pre +1 
       if (curQtr >= 2) then 
       allowVend ≠ TRUE 
retQtrs( )  // returning quarters back to the user 
 pre : curQtr > 0; 
 post  : curQtr  ≠ 0 
       allowVend ≠ FALSE 
vend( )  // deliver a drink 
 pre : allowVend = TRUE &&  
       quantity > 0; 
 post  : curQtr  ≠ 0 
       allowVend ≠ FALSE 
       quantity ≠ quantity@pre – 1 
     totalQtrs ≠ totalQtrs@pre + curQtr 
addDrink(m )  // add  m unit of drink in the  
      //machine 
 pre : quantity = 0; 
 post  : quantity ≠ quantity@pre + m 

Fig. 4. Class CoinBox example: Specifications

s1 ≡ curQtr := {0, 1, >= 2}
s2 ≡ allowVend := {TRUE ,FALSE}
s3 ≡ quantity := {= 0, > 0}

and an initial state vector Sd(0) as
Sd(0) := ‖0,FALSE , 0‖

Only one method addDrink(m) can be called at the current state, which will
change the object state to
Sd(1) := ‖0,FALSE , > 0‖

Now, in this state, only method addQtr() can be called, which, results in
change of object state changed to
Sd(2) := ‖1,FALSE , > 0‖

At Sd(2), two methods, addQtr() and retQtrs() may be invoked, resulting
Sd(3) := ‖2,TRUE , > 0‖ and Sd(1),
respectively.

Methods addQtr(), retQtrs() and vend() may be invoked at the newly gener-
ated state Sd(3). Note that the method vend()’s post-conditions include quantity
← quantity−1. As described in Section 3.3(case -1), the method invocation leads
to two different states, Sd(1) and Sd(0) with guard conditions on transitions as



40 Atul Gupta

[quantity > 1] and [quantity = 1], respectively. The complete statechart for the
class CoinBox is shown in Figure 5 with states named alphabetically.

A

s1(0)
s2(F)
s3(0)

B

s1(0)
s2(F)
s3(>0)

D

s1(>=2)
s2(T)
s3(>0)

State Variables: <s1, s2, s3>
int curQtr := {0, 1, >=2}, 
boolean allowVend := {T,F}
int quantity := {=0, >0}

C

s1(1)
s2(F)
s3(>0)

ctor

 addDrink(m)

vend() [quantity=1]

addQtr()

vend() [quantity > 1]

retQtr()

retQtrs()

addQtr()

addQtr()

Fig. 5. Generated statechart for the class CoinBox

Note that for a different state configuration, one may obtain a different stat-
echart, thereby providing flexibility to the user to experiment and come up with
a more desirable statechart for further analysis. For example, the statechart for
the class CoinBox with slightly different state configuration, is shown in Figure
6.

5 Performing V&V using Generated Statechart

The generated statechart can be carefully inspected to identify various discrep-
ancies in the method contracts. Following discrepancies/errors can be identified
as a result of the inspection:

– Incorrect method invocations (transitions)
– Incorrect resulting states.
– Dead states
– Incorrect end states.
– Un-reachable states and transitions.

All these discrepancies can be tracked down to either incorrectly or incompletely
specified pre- or post-conditions for object’s methods.

The above approach, as any other static verification method, is complemen-
tary to software testing and supports it to a greater extent. As we have inspected
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A B C

State Variables:<s1, s2, s3>
int curQtr := {<2, >=2}, 
boolean allowVend := {T, F}
int quantity := {=0, >0}

ctor

addDrink(m)

retQtrs() [curQtr > 0]

vend() [quantity=1]

addQtr() [curQtr < 1]

retQtrs() [curQtr > 0]

addQtr() [curQtr = 1]

retQtrs()

vend() [quantity > 1] addQtr()

Fig. 6. Generated statechart for the class CoinBox (for a different state config-
uration)

the obtained statechart from a class diagram with pre and post-condition con-
straints attached with class methods, the actual run-time behavior of the con-
figuration, like proper objects’ instantiations, methods actual outputs cannot be
verified. The obtained statecharts can be further used for systematically gener-
ating automated unit tests to meet these objectives.

Performing Automated Testing
The statechart obtained from the object’s class diagram can be considered as
an abstract representation of the behavior of that object at source-code level.
Therefore, the automated test suite generated from the model can be directly
executed against the object’s code under test. Due to the state representations
(specific assignments of state variables-values) used in our approach, the auto-
mated generation of test cases not only has automated generated test sequences,
but, unlike other automated-approaches generating tests from statecharts, test-
oracles will also be generated automatically. Moreover, the pre/post-conditions
and invariant-checks provide additional test-oracles if required.

Various coverage adequacy criteria for statechart based test generation have
been defined [14, 10] which include All-Transition coverage(AT), All-Transition-
Pair coverage(ATP), Full-Predicate coverage(FP), Transition-Tree coverage (TT).
Due to the nature of the constraints involved in the pre-conditions of the method
invocations, we may also generate test-inputs automatically, but in general this
problem is un-decidable for an arbitrary path in the statechart. In any case,
we can easily obtain the test-harness for automated unit testing which includes
systematically generated unit tests for these coverage criteria.

As an example of automatically generated JUnit [20] test cases from the
generated statechart for the CoinBox example coded in Java, we consider the
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Figure 5 and use All-Transition (AT) coverage criteria for test generation. An
automatically generated test case testAddDrink() covering the transition from
state A to state B in the figure will look like as follows:

public class CoinBoxTest extends TestCase {
CoinBox cbox;

public CoinBoxTest(String name) {
super(name);
cbox = new CoinBox();

}

public void testAddDrinkAtA(){ // testing addDrink(m) in state A
try{

assertEquals(0, cbox.getCurrectQtrs());
assertFalse(cbox.isAllowVend());
assertEquals(0, cbox.getCurrectQty());
cbox.addDrink(2);
assertEquals(0, cbox.getCurrectQtrs());
assertFalse(cbox.isAllowVend());
assertTrue(cbox.getCurrectQty()> 0)

}catch (Exception e){fail(”Unwanted exception is raised”)}
}

}
The test case oracle before and after the call to addDrink(m) method are gener-
ated automatically as they represents the state configurations before and after
the method call.

The generated statechart is a representation of the explicit behavior of the
object, i.e. the methods which can be invoked at any given state. For all other
methods, which cannot be invoked, i.e. not shown in the graph, the most straight-
forward implicit behavior is that it should results in some kind of exception to
be raised. For example, invoking method addQtr() at start state will raise an
exception, which will be ensured by following test case:

public void testaddQtrRaiseExceptionAtA(){
try{

assertEquals(0, cbox.getCurrectQtrs());
assertFalse(cbox.isAllowVend());
assertEquals(0, cbox.getCurrectQty());
cbox.addQtr();
fail(”Exception should be raised”) }catch (Exception e){}

}}
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6 Discussions

A model is usually an abstract, partial representation of the software artifact’s
desired behavior. Any V&V done on this model are on the same level of ab-
straction as the model. The results of the V&V may not necessarily equally
applicable for the software artifact and greatly affected by the difference of the
two levels. The statechart obtained from the object’s class diagram is an abstract
representation of the behavior of that object at source-code level. Therefore, the
automated test suite generated from the model can be directly executed against
the object’s implementation.

An important requirement of the proposed approach is the identification of
the set of proper domain variables to be used as state variables. In the most
straightforward case, SD may be chosen as (Sd). A wise selection of domain
variables from SD , however, may increase the efficiency (i.e. reduce the efforts
requirements) of the whole process. For instance, the variable totalQtrs in our
CoinBox class, incremented by the curQtr in the post-conditions of method
vend(), can be left out from the considerations of state variables. For the given
problem, the variable totalQtrs does not play any significant role in the behavior
of the Coinbox object.

An important outcome of this exercise is that it allows a modeler to specify
object’s dynamic requirements declaratively on an abstract level, at one place
on a structural diagram (i.e. class diagram) without referring to its operational
dynamic diagrams like statecharts as they can be generated on the fly. The ap-
proach is inherently suited to a typical evolutionary software development where
software objects gradually evolve incrementally. Other benefits and limitations
of the approach are discussed in the following Sections.

6.1 Effective V&V for Software Re-Use

Starting from initial state, by exploring the possibilities of a method invocation
in each of the state next generated, we virtually worked out for all possible simple
(no repetition) execution-sequences of object’s methods with respect to the stat-
echart generated. Our approach, at the same time, rules out all possible simple
invalid-sequences. Allowing method-repetitions (i.e. loops in the statechart) in
the test sequences may further improve the testing results. This is highly desir-
able for software re-use. Moreover, the objects with method contracts so obtained
are easier to integrate and the assembly is expected to be more reliable.

6.2 Change Management

The approach strengthens the link between an object’s constrained class dia-
gram and its UML statechart by generating the statechart from the constrained
class diagram. The changes made on the obtained statechart can be mapped to
the method constraints and vice-versa. This lock-step of the two specifications
will be highly desirable during software evolution and change management. The
CoinBox example validates the point made here.
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6.3 Limitations of the Proposed Approach

Simplicity of our approach lies in the fact that state generation depends only
in identifying the set of domain variables of interest, i.e., Sd of that configura-
tion and their abstracted-out partitions for the domain values. This requirement,
however, seems to add to the variability in the effectiveness of our approach ap-
plied by two developers on the same problem as the two may choose different sets
of domain variables of interest and/or their partitions. Clearly, the effectiveness
of this approach depend on the size of the state space as constituted by global
state vector Sd , and results of this analysis are to be interpreted accordingly. Ar-
guably, this approach provides more flexibility to the designers, for the amount
of efforts they are willing to make for verification at that level.

Automated testing is possible but at times, it may have to be supplemented
with the test inputs for some paths for which test data may not be automatically
generated.

7 Conclusions and Future Work

Automation is the future trend of software V&V in order to reduce its cost. In
the past decades, a great amount of research effort has been spent on automatic
test case generation, automatic test oracles, etc. However, the current practice
of software test automation is still mostly based on recording manual testing
activities and replaying recorded test scripts for regression testing.

In this work, we presented a simple and practical approach to automatically
generate a UML statechart for an object from its annotated structural repre-
sentation, namely, UML class diagrams. Our approach make use of OCL pre
and post-condition constraints specified at method level and a state vector Sd

consists of important domain variables involved in the constraint specifications.
From an initial value assignment of Sd as start state, we incrementally generate
remaining of the statechart by searching applicable methods at current state and
obtaining resulting states until all the generated states are explored.

The generated statechart can be used for performing effective automated test-
ing of the implicit and explicit behavior of the object. The resulting statechart
and class specifications are in a lock-steps which facilitates effective incremental
development and change management including efficient regression testing of the
objects.

Identifying the set of key run-time domain variables is possible as we are
dealing at near-code level, but informal selection of these variables for our anal-
ysis may require some non-trivial efforts. There is a need of developing formal
approaches to simplify this task. Testing may not be fully automated as test in-
puts for some paths may not be automatically generated. We did not make any
effort estimation for the proposed approached; therefore, make no claim about
the efficiency of the approach. This should be treated as future work. We also
plan to undertake some case studies as to investigate the effectiveness of our
approach on real life problems.
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Using B to verify UML Transformations

Kevin Lano

Dept. of Computer Science, King’s College London, Strand, London, WC2R 2LS, UK

Abstract. This paper describes the use of the B formal method to verify
semantic properties of UML graphical models, and the correctness of
transformations on these models.

1 Introduction

UML is a large and complex notation, in which many aspects of the semantics
remain incomplete or are only expressed in an operational manner, ill-suited for
analysis using proof tools. Specific problems include:

1. Complex use of undefined and null values within OCL, and missing/inex-
pressible axioms of OCL. For example the s→at(i) operation does not have
a formal semantics in UML 2.0 [1].

2. Lack of semantic consistency properties for individual models and between
models of the same system [2]. For example, it is necessary that the state
invariants of a state machine defining the classifier behaviour of a particular
class should be consistent with the invariants of that class.

3. Lack of grounded interpretation for UML concepts, independent of UML [3].

Many of these problems are due to the lack of an objective semantics [4] for UML,
and the desire by the UML community to leave certain semantic aspects open,
to support a wider use of the notation across different domains. At the same
time, an objective semantics is essential to support reuse (if we don’t know what
a diagram means, how can we reuse it and its corresponding developed code?)
and to support verification (the diagrams should have a mathematical seman-
tics because they are abstract descriptions of mathematically precise artifacts –
programs).

We solve some of these problems by defining a subset, UML-RSDS (Reactive
system development support), of UML, which has a precise semantics based on
ZF set theory and classical predicate calculus, which is also the foundation for the
Z [5] and B [6] specification languages. This semantics is entirely independent of
UML. B provides a notation in which the semantics of models can be expressed
and used for verification and validation of the models. B provides an integration
of class diagram and state machine models in single components (B machines).

Figure 1 shows the overall development process supported by UML-RSDS
and its accompanying toolset. A developer can construct PIM or PSM class
diagrams and state machines using the tool, transform models to improve their
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UML−RSDS
Specifications
PIM level

UML−RSDS
Specifications
PSM level

Refinement
transformations Quality improvement

transformations B Specification

B Synthesis

SMV
       Synthesis

SMV
Specification

Java
Code

Synthesis of Java
Testing

Automated step
Semi−automated step
Manual step

Model checking

Consistency, Completeness
checking

Proof, animation

Fig. 1. UML-RSDS Development Steps

quality or refine them, translate to B [6] or SMV [7] for semantic analysis, and
generate Java code from a Java PSM.

The translation from UML to B closely corresponds to the semantics of UML-
RSDS defined in [8]: both the mathematical elements used to interpret classes,
associations, etc, and the structuring/interrelationships of machines parallels
the formalisation of models as theories, and the relations of inclusion/extension
between these theories. However there are some differences, such as the absence
of real numbers in B, and the absence of internal concurrency in B.

Section 2 defines the UML-RSDS notation, Section 3 describes the UML-
RSDS tools. Section 4 describes the translation from UML-RSDS specifications
to B. Section 5 shows how UML transformations can be verified using this trans-
lation. Section 6 gives a comparison with related work.

2 Specification in UML-RSDS

UML-RSDS specifications consist of:

1. A UML class diagram, including constraints attached to operations, classes
and (sets of) associations;

2. A use-case diagram, defining the operations of the system;
3. State machine models attached to classes or operations in the class diagram,

or to use cases.
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Class attributes can be stereotyped as input , internal , derived or output : Derived
attributes are prefixed by / as usual. The prefix ? indicates an input attribute
and ! an output. These stereotypes are applicable for many different kinds of
system, for example, an input field on a web page, or a sensor in a process
control system, could both be represented as input attributes.

2.1 Specification Example

An example of a UML-RSDS specification, of part of a robot control system
from the production cell case study [9], is shown in Figure 2.

FeedBelt ERTable
? fbsw: State
? fbend: State
! fbm: State

* 1 ? ertblank: State
? ertts: State
? ertbs: State

! ertvm: VertMovement
! ertrm: RotMovement 

C1, C2

C3, C4

belts

ProductionCell

ok: BooleanState <<enumeration>>
Off
On

*

1

11

RotMovement <<enumeration>>
Off
Clockwise
Anticlockwise

Off
Up
Down

VertMovement <<enumeration>>

Fig. 2. Class Diagram of Production Cell System

The FeedBelt class represents feed belts, which move work pieces (such as
car bodies) into the robot production cell. These have a motor fbm to move the
belt, a switch fbsw to switch the belt on and off, and a sensor fbend to detect
if a piece has reached the end of the belt, ready for unloading into the next
component of the cell.

One such component is an ‘elevating rotating table’, represented by the
ERTable class. These tables have two motors ertvm for vertical movement and
ertrm for rotary movement, and two sensors ertts and ertbs to detect if the table
is at its top or bottom position, respectively. The sensor ertblank detects if there
is a work piece in the table.
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Normally one or more feed belts may feed blanks into a given table. belts
gives, for each table, the set of belts that feed that table.

Some example constraints in this system are:

– C1 “If the belt switch is off, the motor is off”:

fbsw = Off ⇒ fbm = Off

– C2 “If there is no blank at the end, the belt keeps moving”:

fbsw = On & fbend = Off ⇒ fbm = On

These are local invariants of the FeedBelt class.
A constraint which links the feed belt and table classes is:

– C3 “If a belt is ready to unload, and its table is ready to receive a blank,
then unloading may proceed”:

fbsw = On & fbend = On &
ertblank = Off & ertts = On ⇒ fbm = On

C3 is a constraint on the association between FeedBelt and ERTable: it specifies
that, for any pair of feed belt and table objects linked by this association, that
the given invariant must hold true. In this system the association represents
the physical connection between the robot system components: that the belt is
positioned to feed blanks to the table.

2.2 UML-RSDS Constraints

One significant feature of UML-RSDS class diagrams is that constraints may
be attached to associations, these represent an implicit universal quantification
over all the objects linked by the associations.

Table 1 shows the syntax of constraints currently accepted in UML-RSDS
constraints, within the UML-RSDS tools. A valueseq is a comma-separated se-
quence of values. A factor level operator op1 can be: +, −, ∗, /, div , mod , \/,
/\ (also written as ∪ and ∩), or a. A comparator operator op2 is one of =, /=,
<, >, <=, >=, :, <:, /:, / <:. A logical operator op3 is one of &, or . Identifiers
are either class names, function names, class features (attribute, operation or
role names), elements of enumerated types, or represent variables or constants
(if in upper case). Variables are implicitly universally quantified over the entire
formula. Operations can also be written with parameters as op(p1, ..., pn), etc.

The notation objs | (predicate) denotes the select operator, and evaluates to
the set of elements of objs which satisfy predicate.
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< value > ::= < ident > | Variable expression.
< number > | < string > | Primitive literal
< boolean > expressions.

< objectref > ::= < ident > |
< objectref >.< ident > | Navigation call expression.
< objectref > |( < expression > ) Select expression.

< arrayref > ::= < objectref > |
< objectref >[< value >] At expression.

< factor > ::= < value > |
{ < valueseq > } | Collection literal
Sequence{ < valueseq > } | expressions.
< arrayref > |
< factor > op1 < factor > Infix binary operation call (1)

< expression1 > ::= < factor > op2 < factor > Infix binary operation call (2)
< expression > ::= < expression1 > |

( < expression > ) |
< expression1 > op3 < expression > Infix binary operation call (3)

< invariant > ::= < expression > |
< expression > => < expression >

Table 1. UML-RSDS Constraint Syntax

3 The UML-RSDS Tools

A large toolset has been developed to support UML-RSDS. The tool facilities
include:

1. Diagram creation and editing for class diagrams and state machines.
2. Syntactic and semantic checks on diagram correctness, including consistency

and completeness of constraints.
3. Transformations on UML models.
4. Automated translations from UML-RSDS specifications into SMV, the B

notation, and Java.

The translation and diagram checking operations are fully automated. Transfor-
mations are also automatically applied, but must be selected manually by the
tool user.

In addition, there are facilities for the creation of web applications.

4 Translation from UML-RSDS to B

To semantically analyse UML models, and to animate (test using symbolic ex-
ecution) models, we use a translation to the B notation [6]. B is an established
formal method which has been extensively used in industry, particularly in the
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European railway industry [10]. It has comprehensive tool support, the B Toolkit
[11], Atelier B [12] and B4Free.

The translation from UML-RSDS into B essentially represents the axiomatic
UML-RSDS semantics [13, 14, 8] of models in the B language. Each class E is
represented by a variable es (the set of instances of E currently existing) and
a type E OBJ with es ⊆ E OBJ . Each instance attribute att of type T is
represented by a map

att : es → T ′

where T ′ is the representation of T in B. Associations are also represented as
maps, Table 2 shows the most common cases.

Association B role type B invariants

A∗–
r
∗B r : as → F(bs)

A0..1–
r
∗B r : as → F(bs) ∀ a.(a ∈ as ⇒ r(a) ∩ union(r [as − {a}]) = ∅)

A1–
r
∗B r : as → F(bs) ∀ a.(a ∈ as ⇒ r(a) ∩ union(r [as − {a}]) = ∅)

union(r [as]) = bs
A∗–

r
1B r : as → bs

A0..1–
r
1B r : as � bs

Table 2. Representation of Associations in B

Ordered associations are represented in a similar manner, except that the
range type of the B representation is seq(bs) instead of F(bs). Table 3 shows the
interpretation of some basic expressions.

OCL Semantic Representation in B

Variable or constant x , primitive or string value x x
Attribute of single-valued expression obj .att att(obj )
Attribute of set-valued expression s.att att [s]
Role of single-valued expression obj .role role(obj )
Multiplicity ONE role of set-valued expression s.role role[s]
Non-ONE role of set-valued expression s.role union(role[s])

Table 3. The Interpretation of OCL expressions in B

The B Toolkit can then be used to check if a UML specification has a model,
non-trivial models, or to animate the specification. It can also be used to compare
two models to verify that one is a refinement of another, ie, that all functional
properties of one model are also true in a proposed refining model.

Proof obligations for internal consistency of a module in B are:

1. That there is some state which satisfies the module constraints and the
typing constraints.
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2. That all the constraints are true in the initial state.
3. That each operation, if executed within its precondition, maintains the truth

of each constraint.

These correspond directly to similar properties of the UML-RSDS class or sub-
system from which the B module was derived. Together they ensure that the
constraints are always true, for each object of the class, at time points where no
operation is executing on the object provided that operations are only executed
within their preconditions (the latter becomes a proof obligation for callers of
the operations). Condition 3 ensures that each transition into a state of a state
machine attached to a class establishes the invariant of that state.

Animation can be used to check that state invariants of a class are consistent
with the class invariants: it should be possible to enter each state of the state
machine while satisfying the class invariants.

In the translation to B, the effect of an input event is made explicit: the
changes to all objects affected by the event are defined in the B operation which
represents the event. The semantics of inheritance, state machines and dynamic
binding are also made explicit in the B translation.

The translation to B uses a pragmatic approach which attempts to make the
resulting B specification as modular as possible, to enable a close correspondence
between the B and UML, and to improve the feasibility of proof. Classes A and
B are translated to separate B machines A and B unless:

1. A and B are linked by inheritance: all descendents of a class E without
ancestors are grouped into a single machine E .
If instead we require A and B to be represented by separate machines, the
transformation ‘replace inheritance by association’ can be applied before
translation to B.

2. A and B are members of a cycle of (directed) associations: an association
E →r F is represented as a variable r of E which refers to a variable of F ,
so that machine E USES machine F . Cycles are not permitted in the USES
relationship, so if there are dependencies in both directions the machines for
A and B must be extended by a third machine S representing the complete
subsystem of A, B and their linking associations together. The variables
representing the associations and the operations on these are placed in S .

Figure 3 shows an example of how UML structures are represented in B.
For the production cell there are no inheritances or cyclic dependencies of

classes, so all classes can be specified in separate B machines. A SystemTypes
machine encapsulates the type definitions of the system:

MACHINE SystemTypes

SETS State = {Off, On}; FeedBelt_OBJ; ERTable_OBJ

END

The FeedBelt machine gives the semantic representation of the FeedBelt class,
with attributes expressed as maps from the set of existing FeedBelt objects
(feedbelts) to their type sets, and operations synthesised to maintain the class
invariants:
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1

cr

A C

Controller

USES

INCLUDES
INCLUDES

UML−RSDS Structure B Structure

(combines
A and B)

Fig. 3. Structure of B Translation of UML

MACHINE FeedBelt

SEES SystemTypes

VARIABLES feedbelts, fbsw, fbend, fbm

INVARIANT (feedbelts <: FeedBelt_OBJ) &

(fbsw : feedbelts --> State) &

(fbend : feedbelts --> State) &

(fbm : feedbelts --> State) &

/* C1: */

(!feedbeltx.(feedbeltx : feedbelts =>

( fbsw(feedbeltx) = Off => fbm(feedbeltx) = Off ))) &

/* C2: */

(!feedbeltx.(feedbeltx : feedbelts =>

( fbsw(feedbeltx) = On &

fbend(feedbeltx) = Off => fbm(feedbeltx) = On )))

INITIALISATION feedbelts := {} ||

fbsw := {} || fbend := {} || fbm := {}

OPERATIONS

oo <-- new_FeedBelt(fbswx,fbendx,fbmx) =

PRE feedbelts /= FeedBelt_OBJ & fbswx : State &

fbendx : State & fbmx : State &

( ( fbswx = Off => fbmx = Off ) &

( fbswx = On & fbendx = Off => fbmx = On ) )

THEN

ANY feedbeltx

WHERE feedbeltx : FeedBelt_OBJ - feedbelts

THEN feedbelts := feedbelts \/ {feedbeltx} ||

fbsw(feedbeltx) := fbswx ||
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fbend(feedbeltx) := fbendx ||

fbm(feedbeltx) := fbmx ||

oo := feedbeltx

END

END;

setfbsw(feedbeltx,fbswxx) =

PRE feedbeltx : feedbelts & fbswxx : State

THEN fbsw(feedbeltx) := fbswxx ||

IF fbswxx = Off

THEN fbm(feedbeltx) := Off /* Derived from C1 */

ELSE IF fbswxx = On & fbend(feedbeltx) = Off

THEN fbm(feedbeltx) := On /* Derived from C2 */

END

END

END;

...

END

The controller machine defines all externally-available operations of the system,
and manages the global invariants.

For each operation such as setfbsw there is both a local version setfbsw of the
operation, defined in the machine representing the owning class of the operation,
and a global version set fbsw , defined in the Controller machine. The local
version carries out those updates of local features due to the operation, whilst
the global version carries out updates of non-local features.

The specifications of B operations are generated from UML-RSDS constraints.
These specifications are derived from three parts of the UML-RSDS models:

1. The invariant constraints of the system.
2. The pre and post constraints of the operation, together with its declaration

in its owning class.
3. The statemachine of the owning class.

Operations which update features may affect the truth of invariant con-
straints, both local and global. Therefore it may be necessary to define additional
effects for the operation, to maintain these constraints.

In general there are five stages in deriving operation code from invariant
constraints:

– For each individual constraint:
1. Identify if the operation can invalidate the constraint, and therefore if

new code needs to be added to the operation to ensure that the constraint
is not invalidated.

2. Identify what set of objects throughout the system can be affected by
the operation.
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3. Identify what updates are required on each affected object to maintain
constraints.

4. Convert the update and the conditions under which it applies into B
notation.

– Integrate the B derived from each individual constraint into an overall effect
for the operation.

For example, in the case of setfbsw(fbswxx ), this operation can violate both
C1 and C2. The new updates which need to be added are:

fbswxx = Off => AX(fbm = Off)

in the first case, and

fbswxx = On & fbend = Off => AX(fbm = On)

in the second. No further objects in the system are affected by these actions,
so the required updates are purely local to the feedbelt feedbeltx . The updates
become

IF fbswxx = OFF THEN fbm(feedbeltx) := Off END

and

IF fbswxx = On & fbend(feedbeltx) = Off
THEN fbm(feedbeltx) := On
END

in B notation. These can be integrated into a single operation using an IF THEN
ELSE structure as their conditions are mutually exclusive.

Operation postconditions can modify local features of a class. These updates
are specified in the same manner as in constraint succedents, with the addition
that the value of a modified attribute att at the start of the operation can be
referred to as att@pre.

Underspecified postcondition constraints can be formalised using the ANY
construct of B.

Behavioural statemachines can be attached to a class C , to define how the
operations of that class change the state of the class. The transitions of the
statemachine can modify local features of the class and also invoke operations
of supplier objects. In the translation to B, the local updates are carried out
in the local version of the operation, and the non-local are carried out in the
Controller version.

The correctness of the translation can itself be verified by providing a com-
mon semantics for B and UML, and demonstrating that the B translation T (e)
of any UML element e has the same semantics as e [15].

The close correspondence between the UML and the B translation permits
analysis on the generated B to be interpreted directly in terms of the model it
is derived from.



56 Kevin Lano

5 Verification of Model Transformations

Transformations on UML models include:

1. Quality improvements, such as removing redundant classes or associations
2. PIM to PSM transformations, such as the replacement of many-many asso-

ciations by many-one associations (for implementation of a data model in a
relational database).

3. Introduction of detailed design elements, such as a design pattern.

A large number of UML model transformations are known in the modelling
community, and some, such as transformations of class diagrams to relational
database ER diagrams, have been embedded in commercial tools. We also pro-
vide a wide range of transformations in the UML-RSDS tools.

However, developers may need to apply variations of known model transfor-
mations, or devise new transformations, and the correctness of these should be
shown, so that properties of the original system are preserved in the transformed
system.

The translation from UML to B described in the previous section can be
used for such verification, by using the B concept of formal refinement. Figure
4 shows the approach adopted. The models on the LHS can be combinations of

Initial
UML
Model

Transformed
UML Model

Transformation

Translation to B: Model semantics B translation 
of initial model

Translation to B: Model semantics

B refinement

B translation of 
transformed model
as REFINEMENT 
module

Fig. 4. Transformation Verification

class diagrams and state machines, as in transformations which introduce the
State pattern. Transformations between different modelling languages could also
be proved correct, provided both languages have a semantics expressible using
B.



Using B to verify UML Transformations 57

A model transformation to be verified is expressed in a general form, and
both the original model and the transformed model are translated to B, which
expresses their semantics (the translation to B is performed automatically by
the UML-RSDS tool). The transformed model is defined in a B module which is
declared as a REFINEMENT of the B module which expresses the semantics of
the original model. The B proof obligations for refinement can then be generated
using a tool for B. These obligations are:

1. That the static invariants of the original module remain true (under the data
transformation) in the refined module.

2. That the possible initialisations of the refined module correspond to possible
initialisations of the original module.

3. That for each operation op of the refined module, its behaviour as defined in
the refined module is consistent with its behaviour as defined in the original
module. More precisely, each possible execution of the refined version of op
corresponds under the data transformation to a possible execution of the
original version.

The refinement proof in B establishes that all pre-post properties of operations
and that all invariant properties of the original UML model are also valid in the
transformed model.

Each such proof verifies a general family of model transformations. For exam-
ple, consider the transformation ‘replace many-many association by two many-
one associations’ shown in Figure 5.

A B
* *

CA1 B1

* *1 1

br

a1r b1rcr1 cr2

ar

Fig. 5. ‘Replace many-many association’ Transformation

The B module representing the semantics of the original model is:

MACHINE Model1
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SETS A_OBJ; B_OBJ

VARIABLES as, bs, ar, br

INVARIANT (as <: A_OBJ) & (bs <: B_OBJ) &

(ar: bs --> FIN(as)) & (br: as --> FIN(bs)) &

!ax.(ax : as =>

!bx.(bx : bs & bx : br(ax) => ax : ar(bx))) &

!ax.(ax : as =>

!bx.(bx : bs & ax : ar(bx) => bx : br(ax)))

INITIALISATION

as := {} || bs := {} || br := {} || ar := {}

OPERATIONS

addbr(ax,bx) =

PRE ax: as & bx: bs

THEN

br(ax) := br(ax) \/ {bx} ||

ar(bx) := ar(bx) \/ {ax}

END:

...

END

There are also operations to create A and B instances, and to remove elements
from the association, etc.

The model of the new system has the formalisation:

REFINEMENT Model2

REFINES Model1

SETS C_OBJ

VARIABLES a1s, b1s, a1r, b1r

INVARIANT (a1s <: A_OBJ) & (b1s <: B_OBJ) & (cx <: C_OBJ) &

(a1r: cs --> a1s) & (b1r: cs --> b1s) &

(cr1: as --> FIN(cs)) & (cr2: bs --> FIN(cs)) &

!ax.(ax : a1s =>

!cx.(cx : cs & cx : cr1(ax) => ax = a1r(cx))) &

!ax.(ax : a1s =>

!cx.(cx : cs & ax = a1r(cx) => cx : cr1(ax))) &

!bx.(bx : b1s =>

!cx.(cx : cs & cx : cr2(bx) => bx = b1r(cx))) &

!bx.(bx : b1s =>

!cx.(cx : cs & bx = b1r(cx) => cx : cr2(bx))) &

a1s = as & b1s = bs &

!ax.(ax : a1s => br(ax) = b1r[cr1(ax)]) &

!bx.(bx : b1s => ar(bx) = a1r[cr2(bx)])

INITIALISATION

a1s := {} || b1s := {} || cs := {} ||

b1r := {} || a1r := {} || cr1 := {} || cr2 := {}

OPERATIONS

addbr(ax,bx) =

PRE ax: a1s & bx: b1s

THEN
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IF bx : b1r[cr1(ax)]

THEN skip

ELSE

ANY cx WHERE cx : C_OBJ - cs

THEN

cs := cs \/ {cx} ||

a1r(cx) := ax ||

b1r(cx) := bx ||

cr1(ax) := cr1(ax) \/ {cx} ||

cr2(bx) := cr2(bx) \/ {cx}

END

END

END;

...

END

The last four invariant conjuncts describe the refinement relation corresponding
to the data transformation, and they define how the data of the original model
is interpreted in terms of the new model.

The invariants of the original model must be proved correct for these inter-
pretations, for example the property that ar and br are inverse roles:

!ax.(ax : as =>
!bx.(bx : bs & bx : br(ax) => ax : ar(bx)))

must hold in the form:

!ax.(ax : a1s =>
!bx.(bx : b1s & bx : b1r[cr1(ax)] => ax : a1r[cr2(bx)]))

This is proved by using the corresponding properties of the pairs of inverse roles
a1r and cr1 and b1r and cr2.

For each operation, each execution of the operation according to the Model2
definition must satisfy the Model1 specification of the operation, under the in-
terpretation of Model1 data in Model2. Informally this is clear for addbr , since
if there is not already a cx with

ax = a1r(cx ) & bx = b1r(cx )

then such a cx is created and results in bx being added to b1r [cr1(ax )], and ax
to a1r [cr2(bx )] as required. Formal proof of the transformation requires precise
assumptions (which might be neglected in informal definitions of UML transfor-
mations). In this case we require that no memory problems occur, and that it is
always possible to allocate a new cx object as required in the new definition of
addbr . We ensure this by fixing C OBJ as isomorphic to A OBJ ∗B OBJ , and
only permitting at most one cx object to be linked to a particular pair (ax , bx )
of A and B elements.
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6 Related Work

Related work on UML is the U2B tool of Butler [16] as part of the RODIN
project [17], and translations [18] from UML to Object-Z.

Constraints which need to be manually specified in U2B are provided au-
tomatically for the developer by UML-RSDS, such as preconditions for addrole
operations on injective associations [19].

Verification of UML transformations is also treated in [20], using algebraic in-
terpretations, however this has limitations (simple patterns such as Value Object
cannot be treated, for example) which our approach avoids. Modelling transfor-
mations in OCL is another alternative [21], however there are no proof tools avail-
able for OCL comparable to the tools available for B. Likewise, the approaches
of [22] and [23], using abstract machines (ASMs) and graph transformations,
respectively, are limited by the lack of proof support for these representations. B
is a more semantically transparent (closer to ZF set theory) representation than
ASM. We also provide direct support for models enhanced with OCL constraints,
which these last two approaches do not.

Our approach to UML development is similar to that of [24], which carries
out performance analysis of a system specified in UML, by means of a translation
to a process algebra and analysis tools for this algebra. However this translation
is manual, which increases the cost and the risk of introducing errors, compared
to automated translations.
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Abstract. Validation of model transformations is important for ensur-
ing their quality. Successful validation must take into account the char-
acteristics of model transformations and develop a suitable fault model
on which test case generation can be based. In this paper, we report our
experiences in validating a number of model transformations and propose
three techniques that can be used for constructing test cases.

1 Introduction

The success of model-driven engineering generates a strong need for techniques
and methodologies for developing model transformations. How to express model
transformations and build appropriate tool support is a widely discussed re-
search topic and has led to a number of model transformation languages and
tool environments.

For practical use in model-driven engineering, the quality of model transfor-
mations is a key issue. If models are supposed to be semi-automatically derived
using model transformations, then the quality of these models will depend on the
quality of model transformations. Proving correctness of model transformations
formally is difficult and requires formal verification techniques. An alternative
approach widely applied in the industry is validation by testing. Today, it is
common practice to apply large-scale testing for object-oriented programs using
tools such as JUnit.

Model transformations can either be implemented as programs (e.g. in Java)
or using one of the available transformation languages (e.g. [1–4]). In both cases,
they require a special treatment within testing. One of the key challenges for
testing model transformations is the construction of ’interesting’ test cases, i.e.
those test cases that show the presence of errors. For black box testing of model
transformations, the meta model of the input language of the transformation
can be used to systematically generate a large set of test cases [5, 6]. If the result
of the model transformation is supposed to be executable, a possible testing
approach is to take the output of a model transformation and to test whether
it is executable [7]. By contrast, a white box approach to testing takes into

? Part of this research was conducted while at the IBM Zurich Research Lab.
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account design and implementation of the model transformation for constructing
test cases. Compared with the extensive work on model-based testing of reactive
systems (see Utting et al. [8] for a taxonomy and tool overview), testing of model
transformations can still be considered to be in its early stages.

In this paper, we present our first experiences with a white box model-based
approach to testing of model transformations. Our techniques have been devel-
oped while implementing a set of five model transformations for business-driven
development [9, 10] which are used in a model-driven engineering approach for
business process modeling. We propose three techniques for constructing test
cases and show how we have used them to find errors in our model transforma-
tions.

The paper is structured as follows: We first introduce the idea of business-
driven development and discuss the motivation for designing our model trans-
formations in Section 2. Then we elaborate on our approach to design and im-
plementation of these transformations in Section 3. In Section 4, we introduce
three techniques for constructing test cases and explain how we apply them to
validate our transformations. We conclude with a discussion of related work and
conclusions drawn from our experience.

2 Model Transformations for Business Process Models

The field of business process modeling has a long standing tradition. Business-
driven development is a methodology for developing IT solutions that directly
satisfy business requirements. The idea includes that business process models
are iteratively refined and transformed using model transformations, to move
semi-automatically from a higher to a lower abstraction level.

We present business process models in the notation of IBM’s WebSphere
Business Modeler [11], which is based on UML 2.0 activity diagrams [12]. The
language supported by the WebSphere Business Modeler makes some extensions
to UML and can be considered as a domain-specific language for business process
modeling. In these models, we distinguish task and subprocess elements. While
tasks capture the atomic, not further dividable activities in the business process
models, subprocesses can be further refined into more subprocesses and tasks.
Control and data flow edges connect tasks and subprocesses. The control and
data flow can be split or merged using control actions such as decision, fork,
merge, and join. Process start and end points are depicted by start and end
nodes. In addition, the language also contains a number of specific actions such
as broadcast for broadcasting signals and accept signal for receiving signals or
maps for mapping input data to output data.

In the language supported by the WebSphere Business Modeler, pin sets
(based on parameter sets in UML2) are used for expressing implicit forks and
joins as well as decisions and merges. Although these constructs leave a lot of
freedom to the developer, they are problematic for complex transformations.
As a consequence, we distinguish between models that only use control actions
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and those that only use pin sets. A model in the Control Action Normal Form
(CANF) requires that an action only has at most one pin set with exactly one
pin in it [13]. A model in the Pinset Normal Form (PNF) requires that all forks,
joins, decisions and merges are expressed implicitly using pin sets [13].

To support the idea of business-driven development for business process mod-
els, we have designed and implemented a number of model transformations for
business process models (see Koehler et al. [10] for a detailed overview). The goal
of these transformations is to enable a model-driven approach within business
process modeling:

– the Control Flow Extraction transformation transforms a business process
model with control and data flow into a process model with control flow only,

– the Data Container Assignment transformation transforms a business pro-
cess model without data flow into a process model with data flow,

– the Cycle Removal transformation transforms a business process model with
unstructured cycles into a process model with structured cycles only [14],

– the Control Action to Pinset transformation [13] transforms a business pro-
cess model into the Pinset Normal Form, and

– the Pinset to Control Action transformation [13] transforms a business pro-
cess model into the Control Action Normal Form.

PinsetToCA transformation
CAToPinset transformation

Input pin:

Output pin:

Pinset:

Task:

Subprocess:

Fig. 1. Example of a process model in both forms

Figure 1 shows an example of a process model in the Pinset Normal Form
(lower model) and in the Control Action Normal Form (upper model). All pre-
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viously mentioned transformations have been implemented as Eclipse plugins
to the WebSphere Business Modeler. In the following, we will concentrate on
the Control Action to Pinset (CAToPinset) transformation, although we have
applied similar techniques to other transformations. First, we will discuss our
approach to design and implementation, and then elaborate on testing the trans-
formations.

3 Design and Implementation of Model Transformations

For design and implementation of the model transformations introduced, we
apply an iterative approach [15] that consists of producing a high-level design
which is then used as a basis for the implementation.

The high-level design of a model transformation aims at producing a semi-
formal description of a transformation, abstracting from its details such as all
possible cases to be supported. As such, it can be considered as an early design in
the elaboration phase, following the terms of the Rational Unified Process [16].
This high-level design provides an incomplete description and is not executable.
The main objective of this activity is to capture the fundamentals of the transfor-
mation graphically to produce a description that can then be used for discussions
among the developers.

A model transformation within high-level design is specified with a set of
conceptual transformation rules r : L → R, each consisting of a left and right
side. The left side L and right side R show subsets of the source and target
models for the transformation respectively. Concrete syntax of the underlying
modeling languages is used, depicting how a part of the source model resembling
the left side L is replaced by the part of the model described by R. In addition to
elements from concrete syntax, those elements that are considered to be abstract
are represented using additional abstract elements. These elements will typically
be refined in later design phases or during implementation.

In Figure 2, rules of the CAToPinset transformation are shown. In addition
to concrete syntax elements such as the fork, abstract elements are used, such as
an abstraction for the node type. Overall, the rules abstract from the details such
as the number of pins in a pin set, the number of outgoing or incoming edges, the
type of the nodes and the type of the edge (control or data flow). Nevertheless,
the main idea of each transformation rule is captured. For example, rule r1
removes a fork, creates a new pin within the pin set of A, and connects the
edges outgoing from the fork directly to the pins of A.

In general, different ways of implementing a model transformation exist. A
pure model-driven approach consists of using one of the existing transformation
engines, e.g. supporting the language QVT [17]. This has the advantage that the
developer is given an environment that allows a definition of the transformation
in a transformation language. In our case, we decided to implement the trans-
formations directly in Java. This target implementation was then packaged as
an Eclipse plugin and executed in the WebSphere Business Modeler.
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Rule r3 (Decision found) Rule r4 (Merge found)
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Rule r1 (Fork found)
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B

Rule r2 (Join found)

.. .... ..

.. .. .. ..

AAbstract node type:
Abstract pinset:

Abstract edge:

Fig. 2. Rules of the Control Action to Pinset transformation

In both cases, the conceptual rules of the transformation have to be refined
by identifying the different cases they have abstracted from and defining how to
handle them. For example, rule r1 in Figure 2 has to be specified in more detail
to take into account the possibility of data flow along the edges, the possibility of
having multiple edges and special cases where parts of the fork are unconnected.
In addition, the rule has to be refined with regards to the different possible node
types for A and B1 to Bn . In our case, possible node types include start and end
nodes, task, subprocess, loop nodes such as a while loop, all control action nodes,
and a number of specific action nodes such as the broadcast node. It is because
of this number of model elements together with attached constraints that the
transformation, which might look trivial at the conceptual level, requires some
effort during implementation as well as thorough testing.

4 Systematic Testing of Transformations

Along the line of general principles of software engineering [18], we can distin-
guish between testing in the small and in the large. Testing in the small applied
to model transformations can be considered as testing each transformation rule
whereas testing in the large requires testing of each transformation.

For both types of testing, challenges of testing specialized to model transfor-
mations can be expressed as follows (adapted from [19]):

– the generation of test cases from model transformation specifications accord-
ing to a given coverage criterion,

– the generation of test oracles to determine the expected result of a test, and
– the execution of tests in suitable test environments.

In our approach to model transformation development, the third challenge
is easy to overcome because we can execute tests directly in our development
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environment. The main challenges are the first and second ones because the
model transformation specification in our case is based on the informal concep-
tual rules introduced above. In the following, we will show how we can partially
overcome these challenges. First, we will discuss common types of errors that
we have encountered when implementing the transformations. Then we discuss
three techniques for test case generation and discuss cases where the test oracle
problem is easy to overcome.

4.1 Fault model for model transformations

A fault model describes the assumptions where errors are likely to be found [20].
Given our approach to model transformation development, we can apply a
model-based testing approach that takes into account the conceptual transfor-
mation rules as models. Based on our experience, the following errors can occur
when coding a conceptual transformation rule:

1. Meta model coverage: the conceptual transformation rule has been coded
without complete coverage of the meta model elements, leading to the prob-
lem that some input models cannot be transformed (e.g. the rule only works
for certain node types, only for control flow edges, or only for one edge
between two tasks but not for two edges).

2. Creation of syntactically incorrect models: the updating part of the trans-
formation rule has not been implemented correctly. This can lead to models
that do not conform to the meta model or that violate constraints specified
in the meta model of the modeling language.

3. Creation of semantically incorrect models: the transformation rule has been
applied to a source model for which it is not suitable, i.e. the result model
is syntactically correct but it is not a semantically correct transformation of
the source model.

4. Confluence: The transformation produces different outputs on the same
model because the transformation is not confluent. This also includes the
possibility that the transformation leads to intermediate models that cannot
be transformed any further because non-confluence of the transformation
has not been detected and treated.

5. Correctness of transformation semantics: the transformation does not pre-
serve a desired property that has been specified for the transformation. Pos-
sible properties include syntactic and semantic correctness (see above) but
also refinement or behavioral properties such as deadlock freedom.

6. Errors due to incorrect coding : there are also errors possible that cannot be
directly related to one of the other categories. These errors can be classical
coding errors.

Often, there is an interplay between meta model coverage and syntactic cor-
rectness. A meta model coverage error can lead to a syntactically incorrect model.
The challenge in all cases is how to systematically generate test cases and how to
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create the appropriate test oracles. Errors due to incorrect coding are indirectly
found when testing for the first four types of errors. In addition, further tech-
niques such as code walk-throughs can be applied. In the following, we introduce
three techniques and discuss how they can be applied to find different types of
errors. The last two types of errors are not explicitly dealt with in this paper
and are left to future work.

4.2 Meta model coverage testing

In our approach to model transformation development, a given conceptual rule
can be transformed into a meta model template. The idea of a meta model tem-
plate is to be able to create automatically template instances that represent
suitable test cases.

In the transition from a conceptual rule to a meta model template, abstract
elements must either be made concrete or must be resolved by parameters to-
gether with a parameter set. To identify for each parameter in the conceptual
rule the possible parameter values, the meta model of the underlying modeling
language must be taken into account.

c) Template instances:

b) Template(X,Y,Z):

a) Conceptual rule:

A

B1

Bn

A
B1

Bn

.. ..

X={StartNode, Fork, Join, Decision, Merge, Task, Subprocess,
LoopNode, Broadcast, AcceptSignal}

Y={FinalNode, Fork, Join, Decision, Merge, Task, Subprocess,
LoopNode, Broadcast, AcceptSignal, Map}

Z={FinalNode, Fork, Join, Decision, Merge, Task, Subprocess,
LoopNode, Broadcast, AcceptSignal, Map}

Y

Z
X

Fig. 3. Conceptual rule, meta model template and possible instances

Figure 3 b) shows a meta model template derived from rule r1 shown in
Figure 3 a). We make concrete the number of available nodes B1, .. ,Bn and fix
it to be n = 2. Further, we also fix the pin set structure of the nodes.
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StartNode DecisionFork

JoinFinalNode

ControlAction

Task AcceptSignalSubprocess

ActivityNode

Action

Broadcast

LoopNode
Merge

Map

Fig. 4. Abridged metamodel extract

The remaining abstraction of the nodes is parameterized by the possible meta
model classes. These can be identified when looking at the meta model (shown in
Figure 4) and must be captured for each parameter in the meta model template.
Figure 3 c) shows two template instances derived from the template.

Due to the abstraction process, one conceptual transformation rule can give
rise to a number of different meta model templates. Figure 5 shows another tem-
plate and possible instances. Here, we assume a different edge structure between
the nodes. Note that when specifying the parameters for X ,Y ,Z one has to take
into account well-formedness constraints of the language which e.g. do not allow
that X includes the StartNode.

It is important to realize that meta model coverage testing is a classical
case where white box testing is very powerful. This is because from each rule a
number of templates can be derived that together can ensure a high degree of
meta model coverage (per rule). If we obtain meta model coverage for each rule,
we can deduce meta model coverage for the entire transformation.

After meta model templates have been defined, automatic generation of tem-
plate instances yields a set of test cases for the transformation rule for which the
template has been defined. Both the systematic instantiation of the templates
and the testing can be automated. In the context of our work, a straightforward
generation of templates has been implemented [13] that requires specification of
the template and the suitable parameters. Based on this, a number of test cases
is then generated automatically.

Beyond finding meta model coverage errors, meta model coverage testing can
also be applied to find both syntactic and semantic correctness errors as well as
errors due to incorrect coding. For syntactic correctness, the test oracle is the
tool environment which in our case can detect whether the transformation result
is syntactically correct. With regards to semantic correctness, each result must
be manually compared and evaluated.

A remaining question is whether each rule needs to have complete coverage
of the meta model or whether sometimes partial coverage can be tolerated if it
is stated by suitable precondition constraints. An extension of the plain meta
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b) Template instances

a) Template(X,Y,Z): X={Fork, Join, Decision, Merge, Task, Subprocess,
Broadcast, AcceptSignal}

Y={Fork, Join, Decision, Merge, Task, Subprocess,
Broadcast, AcceptSignal, Map}

Z={Fork, Join, Decision, Merge, Task, Subprocess,
Broadcast, AcceptSignal, Map}

X
Y

Z

Fig. 5. Meta model template and possible instances

model coverage approach can take precondition constraints into account and give
rise only to those test cases that fulfill the precondition constraints.

Meta model coverage testing is a powerful mechanism and can also be used
for partially ensuring that constraints hold for the model that is created by
the transformation. However, as test cases for meta model coverage are derived
directly from a transformation rule, this technique has its limitations for those
cases in which constraints are formulated for a number of model elements: If
these model elements are not part of a certain rule, no test case generated using
meta model coverage testing will be a suitable test case. This is why in the next
section we present a technique that, given a constraint, aims at construction of
test cases for this particular constraint.

4.3 Using constraints for construction of test cases

Typically, the meta model of a language also specifies well-formedness con-
straints. These constraints can be expressed using the Object Constraint Lan-
guage (OCL) or in natural language. Violations of constraints give rise to syntac-
tic correctness errors. As constraints can be violated by the interplay of several
transformation rules, they cannot be completely detected by meta model cover-
age testing.

As a consequence, we believe that existing constraints specified in the lan-
guage specification should be used to construct interesting test cases that aim
at discovering errors due to the violation of constraints. As a transformation
changes model elements, it needs to be tested that all constraints that may be
violated due to the change hold after applying a transformation. We can test
constraints both on the rule and transformation level.

After identification of the changed model elements, we take those constraints
into consideration that are dependent on the model elements changed. A con-
straint is independent of a model element if the existence or value of the model
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element instance does not influence the value of the constraint, otherwise it is
dependent.

The idea to construct test cases to ensure constraints after application of the
transformation is then as follows:

– Identify model elements changed by the transformation.
– Identify constraints that are dependent on these model elements.
– For each constraint, construct a test case that checks validity of the con-

straint under the transformation.

The test oracle for these tests is again the execution environment which in
our case checks the constraints after application of the transformation.

An important issue is how we can detect which model elements are changed
by the transformation, in the absence of a complete specification of the trans-
formation rules. Partially, these elements can be detected when regarding the
conceptual rule. At the same time, one can also obtain this information directly
from the programmer.

With regards to the CAToPinset transformation, the model elements changed
by r1 are the pin set of A, because r1 extends the pin set by adding an additional
pin. Furthermore, edges are affected because r1 changes their source or target
nodes. In a similar way, we can find model elements changed by the other rules.

In our example of business process models, some of the constraints that are
dependent on the changed model elements are:

– C1: A final node has one incoming edge.
– C2: An initial node has one outgoing edge of type control flow.
– C3: A Loopnode has one regular output pin set.
– C4: A Map has at least one output object pin.

All constraints are concerned with edges or with pin sets and are thus de-
pendent on the changed model elements.

Given a constraint, we construct a test case for it as follows: Constraints can
be divided into positive constraints requiring the existence of model elements
and negative ones requiring the non-existence of model elements. In both cases,
we try to create test cases that, after the transformation has been applied, can
result into a violation of the constraint.

For example, with regards to constraint C1, which requires that a final node
has one incoming edge, we try to create a test case that after transformation
results in the situation that the final node has two incoming edges. Figure 6 a)
shows such a test case. An incorrect implementation will simply remove the join
node and try to reconnect the incoming edges to the final node, which of course
results into a syntactically incorrect model. Figure 6 b) shows a test case for C2

(removal of the join node can lead to the creation of a String data flow edge
from the start node, if incorrectly coded). In Figure 6 c)d) we present similar
test cases for the constraints C3 and C4. All of these test cases have revealed
errors in the implementation of the model transformation CAToPinset.
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a) b)

c) d)

Fig. 6. Test cases for constraints

4.4 Using rule pairs for testing

Another source of errors arises from the interplay of rules: The application of one
rule at some model element in the model might inhibit the application of another
rule at the same model element. The property of confluence requires that the
application of transformation rules on the same or an equivalent model yields the
same result. As stated in [21], confluence of transformations need not always be
ensured. However, it is important to detect whether the overall transformation
is confluent because this can cause very subtle errors that are difficult to detect
and reproduce. Confluence errors can give rise to syntactic as well as semantic
errors.

In theory, the concept of parallel independence [22] of two rules has been
developed which requires that all possible applications of the two rules do not
inhibit each other i.e. it is always the case that if one rule r1 was applicable
before applying r2 it is also applicable afterwards.

If two rules are not parallel independent, they might give rise to confluence
errors. To detect such errors at design time, we have discussed in [21] a set of
criteria which are based on the construction of critical pairs. The idea of a critical
pair is to capture the conflicting transformation steps in a minimal context and
analyze whether a common successor model can be derived. For exact calculation
of critical pairs, a complete specification of the rules is required, e.g. in one of
the model transformation languages.

In testing, the challenge is to construct test cases systematically that lead to
the detection of confluence errors. In our approach, a complete specification of
the transformation rules is not available. We can still use the conceptual rules
for construction of test cases as follows: Based on the idea of critical pairs, we
argue that it is useful to construct systematically all possible overlapping models
of two rules. These overlapping models can represent a critical pair and can thus
be used to test for the existence of a confluence error.

The overlapping models can be constructed systematically. The idea is to
take the left sides of two rules and then calculate all possible overlaps of model
elements. Based on an overlap, a model is constructed which joins the two models
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at the overlapping model elements. If the overlapping model is syntactically
incorrect, it is discarded. Otherwise, it is taken as a test case.

For example, for rules r1 and r3 in Figure 2 one possible overlap is to identify
the node B1 of r1 with node A of rule r3. The result is shown in Figure 7 a),
assuming n = 2, a task node type for all nodes and a simple edge structure.
Figure 7 c) shows another test case constructed from overlapping the rules. This
test case gave rise to a confluence error because removing the fork leads to the
construction of a pin set with two pins at the decision which is invalid and leads
to an execution error because in our environment the construction of invalid
intermediate models is not possible. If the fork is removed first, then no invalid
model is constructed. Note that in a different execution environment supporting
invalid intermediate models, the test case would not lead to an execution error.

a) b)

c) d)

Fig. 7. Test cases for confluence (adapted from [13])

Figure 7 b) and d) show further test cases constructed from overlapping rules
r2 and r4, and r1 and r3, respectively.

The idea of templates introduced above can also be used for rule pairs: If
instead of two rules two template rules are used for constructing the overlap-
ping rule, then the overlapping rule will be a template and can be instantiated
automatically. This leads to an increased number of test cases that can be con-
structed automatically. To detect confluence errors automatically, the execution
of test cases can require human intervention if no ability to compare results of
test case execution automatically is available.

5 Related Work

With the advance of model-driven engineering, the idea of applying a model-
driven approach to testing has also received increasing attention. Heckel and



74 Jochen M. Küster et al.

Lohmann [19] describe how Web applications can be tested in a model-driven
approach. One key idea is to use models as the test oracle for specifying the out-
put of a test. A similar approach could be applicable for model transformations:
If each transformation rule is completely specified in a transformation language,
testing the implementation of the transformation can use the specification as a
test oracle.

Mottu et al. [23] describe mutation analysis testing for model transforma-
tions. They identify four abstract operations within model transformations: Nav-
igation within the model, filtering of elements, output model creation and input
model modification. Based on these operations, they define mutation operators.
For example, a possible mutation operator for navigation changes the associa-
tion used within the navigation. A mutation operator for model creation is to
replace a creation of an object with a parent class. Their mutation analysis can
be used to ensure the quality of the test case set and has therefore a different
focus compared to our work.

Fleurey et al. [5] describe an approach to generate test models. They first
calculate the effective meta model for the transformation and then determine
a coverage criterion based on this effective meta model which is similar to our
concept of a meta model template for a rule. The coverage criterion is used for
generating test models. Overall, their approach can be considered a black box
approach for model transformation testing because they do not explicitly take
different rules into account. Such an approach can be seen as complementing our
work which is based on white box testing. We believe that if white box testing
has succeeded (e.g. applying the techniques presented in this paper), it can be
followed by large-scale black box testing.

Markovic and Baar [24] study how common refactoring operations on class
diagrams such as moving an attribute or an operation can be expressed in the
transformation language QVT and how OCL constraints are influenced by these
operations. They describe a means how OCL constraints can be automatically
refactored in these circumstances. On the contrary to their work, we use OCL
constraints to construct test cases.

Recent work by Baudry et al. [25] summarizes model transformation test-
ing challenges. They first discuss current limitations of black box testing by
generating arbitrary input models. They also introduce the idea of testing the
output of a transformation e.g. for a UML to Java transformation the Java out-
put program can be checked by executing it. Another idea is to use patterns
for specifying input or output of a transformation. This last idea is somewhat
related to our approach, where the conceptual rule abstracts from the details of
a transformation.

In the area of graph transformation which can be used as a formal basis
for model transformation, there have been several approaches that deal with
verification of graph transformations. With regards to testing, Darabos et al. [26]
describe a way to generate test cases for graph pattern matching. They first
extract logical criteria for matching a rule in form of a Boolean expression and
then transform the Boolean expression into a combinatorial circuit. Using fault
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injection into the circuit, mutations of the left side of the rule are created and
form a set of test graphs. Our work can be seen as complementary to their
work because their fault model is different from ours and we do not assume a
graph-transformation-based implementation.

6 Conclusions

Validation of model transformations is a key issue to ensure their quality and
thereby enables the vision of model-driven architecture become reality. In the
context of business-driven development, model transformations are used for
transforming more abstract models into more concrete ones and to move be-
tween different representations of models. In this paper, we have reported our
first experiences with testing a set of model transformations for business process
models systematically.

We have proposed three techniques which follow a white box testing ap-
proach. Using this approach, we have been able to significantly improve the
quality of the model transformations under development. Both the meta model
coverage technique as well as the construction of test cases driven by constraints
has shown the existence of a number of errors. Rule pairs have indicated fewer
errors, possibly due to the low number of rules.

If model transformation rules are completely specified already at the model
level, using one of the model transformation languages, our techniques can also
be applied but may require modifications. With regards to meta model coverage
testing, one could manually abstract from a set of related rules and construct
a conceptual rule which can be transformed into a template. The technique for
using constraints for construction of test cases can make use of the transforma-
tion rules for automatically identifying the elements changed and can then be
applied in the same way as described above. Further, a complete specification of
rules also enhances the ability to use rule pairs for construction of test cases for
confluence.

In our environment, we make the assumption that intermediate models must
be correct with regards to the language specification. Sometimes, it is rather
the case that either the model is correct only after application of the entire
transformation or at certain checkpoints during the transformation. In such a
case, the meta model coverage technique must apply the entire transformation
to a generated test case.

There remain further challenges that we have not been able to address yet, for
example, the automation of constructing test cases from OCL constraints. Here
we see two possible improvements, firstly the automatic detection of constraints
that could be violated by providing an algorithm that, given a meta model ele-
ment, finds all attached constraints. Secondly, the automatic conversion of such
a constraint into a possible test case. Future work also includes the elaboration
of tool support in order to fully automate testing of transformations.
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6. Ehrig, K., Küster, J.M., Taentzer, G., Winkelmann, J.: Generating Instance Models
from Meta Models. Volume 4037 of LNCS., Springer (2006) 156–170

7. Dinh-Trong, T., Kawane, N., Ghosh, S., France, R., Andrews, A.: A Tool-
Supported Approach to Testing UML Design Models. In: Proceedings of
ICECCS’05, Shanghai, China. (2005)

8. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing.
Technical report, Department of Computer Science, The University of Waikato
(New Zealand), Technical Report 04/2006 (2006)

9. Mitra, T.: Business-driven development. IBM developerWorks article,
http://www.ibm.com/developerworks/webservices/library/ws-bdd, IBM (2005)
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Abstract. Model-driven software development (MDD) is seen as a prom-
ising approach to improve software quality and reduce production costs
significantly. However, one of the problems in using MDD especially in
the area of safety-critical systems is the lack of verified transformations.
The verification of crucial safety properties on the model level is only
really useful, if the automatic code generation is also guaranteed to be
correct, i.e., the verified properties are guaranteed to hold also for the
generated code. This particularly means to check semantic equivalence,
at least to a certain extent between the model specification and the gen-
erated code. This paper addresses the problem of verifying that a given
transformation ensures semantic equivalence between an arbitrary model
in a given model specification language and the resulting programming
language code. While the presented approach ensures that the transfor-
mation algorithm is correct, existing related work is restricted on verify-
ing only the correctness of a particular transformation result.

1 Introduction

Model-driven software development (MDD) is seen as a promising approach
to improve software quality and reduce production costs significantly. A major
basis of such an approach is a usually domain-oriented modeling language which
enables to abstract from implementation specific details and thus makes models
(much) easier to develop and analyze than the final implementation. A significant
additional benefit in terms of improved quality and reduced costs could be gained
by the fully automatic transformation of a model-based system specification into
executable code, if at all possible.

In developing safety-critical systems this approach is getting increasing atten-
tion, as model analysis has advantages over pure testing of implemented systems.
Important required safety properties of a system under development could be
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verified on the model level rather than trying to systematically test the absence
of failures. Prominent failures in the past illustrate that testing often fails to
detect malfunctioning by overlooking particular scenarios.

However, one of the problems in using MDD especially in the area of safety-
critical systems is the lack of verified transformations. The verification of crucial
safety properties on the model level is only really useful, if the automatic code
generation is also guaranteed to be correct, i.e., the verified properties are guar-
anteed to hold also for the generated code. This particularly means to check
semantic equivalence, at least to a certain extent between the model specifica-
tion and the generated code.

While testing model transformations [1] and in particular approaches which
exploit the specification of the code generator to derive critical test cases [2] are
a valuable aid to ensure the quality of the transformation, they can only check a
finite number of cases and thus fail to ensure the required semantic equivalence.

This paper addresses the problem of formally verifying that a given trans-
formation ensures semantic equivalence between any model of the given model
specification language and the resulting programming language code.

In compiler construction several approaches exist which check correctness of a
transformation algorithm in particular or the correctness of the implementation
when going from the code to lower level code or executables, see [3] for an
overview. As a detailed example, on the level of source code transformations, Java
and its transformation in Java byte code have been extensively investigated [4,
5]. The approach of proof-carrying code [6] is also weaker than what we intend
to provide, because it concentrates only on the verification of necessary but
not sufficient correctness criteria. The approach of program checking has been
proposed by the Verifix project [7] and has also become known as translation
validation [8, 9], recently also for loop transformations [10]. For an overview and
for results on program checking in optimizing backend transformations cf. [11].

In contrast to these approaches for compiler construction, model to code
transformations are characterized by rules and pattern matching like activation
schemes of these rules, and thus the techniques employed in compiler construc-
tion are not directly applicable for their formal verification.

Although there exist many approaches for the specification and execution
of model transformations, to the best of our knowledge, the only approaches
addressing the problem of semantic equivalence in the above sense, at least to
a limited extent, consider specific model instances and their translation results.
Either specific correctness conditions are checked for both the original model
and its transformation [12] or the semantic equivalence between both models is
guaranteed by a bisimulation check [13].

Our approach realized in the Fujaba Tool Suite4 is based on a formal
specification technique, namely triple graph grammars (TGG) to specify a model
to code transformation. The correctness of this specification and consequently
the code generator is shown using the theorem prover Isabelle/HOL.

4 www.fujaba.de
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The next section will illustrate the use of a domain-oriented modelling lan-
guage based on the example of a production line and its fairly complex control
software. This realistic example of an existing industrial system will also be used
to present the TGG and their application in building model to code transforma-
tions in Section 3. Section 4 describes the use of Isabelle/HOL to verify the
transformation. Section 5 gives an account of the status of our work by listing
required next steps and remaining open questions. Finally, Section 6 summarizes
the work.

2 Modeling Approach

In this section, we provide a brief overview of the employed modeling approach
[14] using a simple case study from the area of flexible production systems.
It exemplifies the need for dependable model transformations and serves as a
running example for explaining the specification of model transformations and
their verification.

The substantial components of this modular system are working stations,
straight and curved monorail tracks, as well as transfer gates (switches). For
the transportation of materials and goods between the working stations self-
propelled transportation units (shuttles) moving along the tracks are employed.
The transportation units circulate on the main loop of the material flow system
and can be stopped at stations or before curves and transfer gates only.

The decentralized production control system consists of PCs on the supervi-
sory control level and Programmable Logic Controllers (PLC) on the cell level.
The components’ actuators and sensors are connected to the PLC via an Ac-
tuator Sensor Interface (ASI). The communication among PCs and PLCs is
implemented by a multi-point interface (MPI, Siemens AG). Higher-level tasks,
e.g., planning, order assignment, and coordination of local activities of all con-
trollers are done at the supervisory control level. The PLCs on the cell level are
responsible for the control of local components such as stations or transfer gates.

For the specification of the control software, we combined subsets of the Spec-
ification and Description Language (SDL) [15] and the Unified Modeling Lan-
guage (UML) [16] into an executable graphical language [17]. In this language, a
block diagram is used to specify the overall static communication structure where
processes and blocks are connected to each other by channels and signal routes.
For implementation purposes, the block diagram is automatically transformed
to an initial class diagram. This class diagram can be refined and extended to an
executable specification. For example, we can assign an automaton to model the
reactive behavior of the control software. Fig. 1(a) presents a simple automaton
for the control of the transfer gate used in our case study.

The specified automaton switches the transfer gate between the straight and
the round direction. Initially, the transfer gate is switched to the straight direc-
tion and fixed by a mechanical interlock. When the condition switch2round=true
becomes true, the interlock is disengaged by the action interlock:=false, and state
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(a) Transfer gate automaton

6

END CASE ;

VAR
s t a t e : INT := 1 ; /∗ s e t to ’ s t r a i g h t ’ ∗/

END VAR ;

CASE s t a t e OF

1 : /∗ c u r r e n t s t a t e i s ’ s t r a i g h t ’ ∗/
IF sw i t ch2 round=t r u e THEN

i n t e r l o c k := f a l s e ;
s t a t e := 2 ; /∗ s e t to ’ s t r a i g h t un locked ’ ∗/

END IF ;

2 : /∗ c u r r e n t s t a t e i s ’ s t r a i g h t un locked ’ ∗/
r o u n d c y l i n d e r := t r u e ;
s t a t e :=3; /∗ s e t to ’ sw i t c h i n g round ’ ∗/

. . .

END CASE ;

First, each state of the automaton is assigned a unique integer value. Then,
we declare an integer variable state to keep the current state of the automaton
which is handled in a case-statement. For our example automaton, the current
state variable state is set to the initial state straight represented by the assigned
integer value.

The outgoing transitions are encoded as if-statements with the transition
guard as condition. For triggerless transitions, the if-statement is omitted if
it is the one and only outgoing transition from that state. If they are more
outgoing transitions with a guard, the triggerless transition is embedded in a
if-else statement. Multiple triggerless transitions from one state are forbidden.
The actions are realized as simple variable assignments. These variables, together
with the variables from the conditions, are mapped by the compiler to the real
addresses of the hardware. Note that the presented program is executed once in
each cycle of the PLC. Thus, it is the body of an implicit loop-forever statement.

4 Model Transformations

To realize the modeling approach outlined in the previous section, we need a
transformation which translates the given automaton to executable PLC-code.
Since code can be also viewed as a more detailed model of the software, we em-
ploy for this translation a model transformation technique based on triple graph
grammars [16]. In this section, we give an overview of our model transforma-
tion approach and introduce the basics of the employed model transformation
technique using our example from the previous section.

(b) Generated PLC-code

Fig. 1. Automaton and generated PLC-code controlling a transfer gate

straight unlocked is entered. Thereafter, the triggerless transition fires and the
appropriate action round cylinder:=true is executed. This action activates the
pneumatic cylinder responsible for turning the transfer gate into the round di-
rection. The state switching round is left if the proximity sensor announces that
the switching process completed. If the switching process was successful, the
state round is entered and the interlock re-engaged. Now, the transfer gate can
be switched back to the straight direction which is performed analogous to the
described switching process for the round direction.

For the specification of the entire system, further controller automata are
needed, e.g., automata to control the stopping and starting of shuttles at sta-
tions or before transfer gates. The sheer number of these automata and their
interaction makes it hard to check manually whether the system functionality is
defined correctly. As an example consider a requirement like ”a shuttle never en-
ters a transfer gate if the transfer gate is currently switching its direction”. Our
approach enables automated verification of such kind of safety-critical require-
ments using model checking [18]. After a successful verification, the controller
automata need to be implemented. In our approach, the defined precise seman-
tics of the automata model allows us to generate the PLC-code automatically.

PLCs are microprocessor systems that are widely used in industrial automa-
tion. The reason for their popularity is that they are robust and reliable. A
PLC is connected to sensors and actuators: the former provide information on
the state of the controlled component while the latter perform the actions pre-
scribed by the control software. PLCs behave in a cyclic manner where each
cycle follows three phases: (1) poll all inputs and store read values, (2) compute
new output values, and (3) update all outputs. The repeated execution of this
cycle is managed by the built-in real-time operating system. Thus, the control
software has to compute the output values based on the read input values only.

For the automatic generation of PLC-code out of an object-oriented specifi-
cation, we adapted our code generation mechanisms to produce Structured Text
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(ST). Structured Text is a notation similar to PASCAL. It provides constructs
such as if-then-else-conditionals and while-loops. As typical object-oriented con-
cepts like inheritance or polymorphism are not supported, we implement the
behavior of an automaton by simple switch-case constructs. The piece of code
in Fig. 1(b) is an excerpt of the generated PLC-code for the automaton shown
in Fig. 1(a) and gives a short impression on the translation in Structured Text
for the states straight and straight unlock.

First, each state of the automaton is assigned a unique integer value. Then,
we declare an integer variable state to keep the current state of the automaton
which is handled in a case-statement. For our example automaton, the current
state variable state is set to the initial state straight represented by the assigned
integer value.

The outgoing transitions are encoded as if-statements with the transition
guard as condition. For triggerless transitions, the if-statement is omitted if
it is the one and only outgoing transition from that state. If they are more
outgoing transitions with a guard, the triggerless transition is embedded in a
if-else statement. Multiple triggerless transitions from one state are forbidden.
The actions are realized as simple variable assignments. These variables, together
with the variables from the conditions, are mapped by the compiler to the real
addresses of the hardware. Note that the presented program is executed once in
each cycle of the PLC. Thus, it is the body of an implicit loop-forever statement.

3 Model Transformations

To realize the modeling approach outlined in the previous section, we need a
transformation which translates the given automata into executable PLC-code.
Since code can be also viewed as a more detailed model of the software, we em-
ploy for this translation a model transformation technique based on triple graph
grammars [19]. In this section, we give an overview of our model transforma-
tion approach and introduce the basics of the employed model transformation
technique using our example from the previous section.

Fig. 2 gives an overview of our model transformation approach. The model
transformation is specified by a number of transformation rules. The transfor-
mation rules are specified w.r.t. the metamodels of the source, the target, and an
additional correspondence metamodel. From these rule specifications, a trans-
formation engine is generated. The automatically derived engine transforms a
source model into a target model yielding an additional correspondence model.
This correspondence model enables a clear distinction between the source and
the target model and holds additional traceability information about the ap-
plied mappings between the involved model elements. This information is used
for further incremental updates if one of the models changes [20]. Hence, after
an initial transformation the correspondence model serves as an additional input
for following update transformations. In addition, since the employed transfor-
mation technique is bidirectional in nature, the source and target models can
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change their roles and a reverse transformation, i.e., form the target to the source
model, will be also possible. However, to keep things simple, in this paper we
consider only transformations in the forward direction, i.e., from the source to
the target model.

Correspondence

Metamodel

Target

Metamodel

Source

Model

Target

Model

Transformation

Engine

Correspondence

Model

Source
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Generation
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Fig. 2. Overview of the model transformation approach

In order to explain the specification technique of triple graph grammars for
model transformation, we have to take a closer look at the involved metamodels.
A metamodel defines the abstract syntax and static semantics of a modeling
language. In Fig. 3, the automata metamodel, the metamodel defining the ab-
stract syntax tree of the Structured Text programming language for PLCs, and
the correspondence metamodel are shown.

In the automata metamodel shown in the upper left of Fig. 3, an Automaton
consists of States and Transitions. A Transition connects States by its outgoing
and incoming associations and has a Trigger as well as an ordered sequence
of Actions. Some special states are the classes InitialState and FinalState. An
automaton can have only one InitialState referenced by the directed association
initialState but many FinalStates though they are rarly used for the specification
of reactive systems.

For the specification of a triple graph grammar, we need an additional corre-
spondence metamodel. It is shown in the upper right of Fig. 3. The metamodel
defines the mapping between a source and a target metamodel by the classes
TGGNode and Object and its associations sources and targets. Since all classes
inherit implicitly from the Object class (not shown here), the correspondence
model stores the traceability information needed to preserve the consistency be-
tween two models. In addition, the class TGGNode has a self-association succ
which connects the correspondence nodes with their successor correspondence
nodes. This extra link is used by our transformation algorithm.

The two described classes and their associations are essential for our trans-
formation algorithm. However, further correspondence classes and refined asso-
ciations can be added. In our example, we have added two additional correspon-
dence classes, including the correspondence class CorrNode used in our example
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Fig. 3. Metamodels of the source, correspondence, and target model

rule (cf. Fig. 4). The additional correspondence classes increase the performance
of our transformation algorithm but have no impact on the carried out formal
verification.

The abstract syntax tree for Structured Text is defined by the metamodel
shown in the lower part of Fig. 3. In fact, we are using only a subset of the
language that is needed for the code generated out of automata. This subset was
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extracted from the Structured Text grammar definition and comprises basically
case-switch statements, if-then-else statements, assignment statements as well
as expressions.

A program is represented by the class PLC that consists of one StaticVari-
ableBlock and a CaseBlock. The class StaticVariableBlock has a to-many compo-
sition association to the class VarDecl which represents a variable declaration. A
variable declaration comprises a Type, an Identifier, and an InitVal class repre-
senting the initial value of the identifier. The CaseBlock relates to an Identifier
and is associated to many Cases that are represented by a Label. Each Case com-
prises a sequence of ordered Statements. A Statement is either a FunctionCall
with a FunctionParameter whose result is assigned to an Identifier, an Assign-
ment with a left-hand side Identifier and a right-hand side Expression, or an IF
condition block. The Expression is defined by two Operands and an Operator.
Up to now, only two kinds of operators are supported: equality and inequality.
The Operands can be also represented by an Identifier or a Constant. An IF
condition consists of an IfPart and an optional ElseIfPart which both have an
Expression and embody an ordered sequence of Statements.

Given these three metamodels, a triple graph grammar for our example model
transformation can be specified. In the following, we will explain the basic con-
cepts with the help of our example and refer to [19] for a formal definition.

Fig. 4. A triple graph grammar rule mapping states to case statements
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A triple graph grammar specification is a declarative definition of a bidi-
rectional model transformation. In Fig. 4, a triple graph grammar rule in the
Fujaba-notation is depicted. The rule specifies a consistent correspondence
mapping between the objects of the source and the target model. In particu-
lar, the presented rule defines a mapping between a state and a corresponding
case statement. The objects of the automaton are drawn on the left and the
objects of the programming language are drawn on the right. They are marked
with the �left� and �right� stereotypes respectively. The correspondence
objects in the middle of the rule are tagged with the �map� stereotype.

The rule is separated into a triple of productions (source production, cor-
respondence production, and target production), where each production is re-
garded as a context-sensitive graph grammar rule. A graph grammar rule consists
of a left-hand side and a right-hand side. All objects which are not marked with
the �create� stereotype belong to the left-hand side and to the right-hand
side; the objects which are tagged with the �create� stereotype occur on the
right-hand side only. In fact, these tags make up a production in Fujaba’s graph
grammar notation.

The source production on the left shows the generation of a new state and
linking it to an automaton. The target production on the right shows the addition
of a new case statement and its linking to the case block. In addition, the case
block is equipped with a label to identify the state in the program. Since states
in the program are encoded as integer values, a mapping function is used to
translate the name of the state to a unique integer value. The correspondence
production in the middle shows the relations between a state and the objects
representing the case statement.

A graph grammar rule is applied by substituting the left-hand side with the
right-hand side if the pattern of the left-hand side can be matched to a graph, i.e.,
if the left-hand side is matched all objects tagged with the�create� stereotype
will be created. Hence, our example rule, in combination with additional rules
covering other elements, can generate an automaton with the corresponding
representation in the programming language by applying the production triples
simultaneously. However, the transformation will not be executed this way. To
execute a transformation, conceptually, we can assume that whenever a state is
added to the automaton, a case statement with a corresponding label will be
generated in the program. This way, the triple graph grammar rules define a
transformation between automata and their representation in the programming
language Structured Text.

The briefly described model transformation approach was realized in the
Fujaba Tool Suite. For the visual specification of a triple graph grammar
rule we use the TGGEditor (cf. Fig. 4) which is realized as a plug-in. This
editor ensures conformance to the source, the correspondence, and the target
metamodels. For this purpose, the required metamodels have to be specified in
Fujaba as class diagrams (cf. Fig. 3).

The execution of a model transformation is done by the MoTE plug-in.
MoTE is the abbreviation for Model Transformation Engine. It is the core li-
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brary for the execution of triple graph grammars and can be also used without
Fujaba. In order to execute a model transformation, we generate from each
triple graph grammar rule Java code using Fujaba’s code generation facilities.
This code is compiled to executable transformation rules which are bundled into
a single Jar archive file. The archive represents the catalog of transformation
rules defining the model transformation specified by a triple graph grammar.
Once the catalog is available, the transformation engine is complete and model
transformations can be carried out.

As mentioned in Section 2, our approach verifies the specified automata
w.r.t. crucial safety requirements. However, the proven properties can only be
guaranteed to hold also for the implementation, if we can ensure that the im-
plementation realizes the same behavior as the specified automata. Therefore,
we have to ensure that the employed model transformation from the automa-
ton model to the code model is correct (the implementation model must be
semantically equivalent to the already verified automata model).

4 Verification

In this section, we describe our approach for the verification of triple graph
grammar transformations in Isabelle/HOL. We show in more detail how to
derive Isabelle/HOL representations from structures in Fujaba and outline
the basic proof scheme.

In essence, we prove that the relation of semantic equivalence is a congruence
with respect to an appropriate representation of the transformation rules. Fig. 5
extends the modeling overview from Fig. 2 with an illustration of our general
proof scheme.

Fig. 5. Overview of the verified model transformation approach
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Note that the model instances (as well as the transformation engine) shown
in Fig. 2 are omitted here. Since we verify the correctness of transformation rules
applied to any model of the specified type, these instances are irrelevant for the
proof.

Model transformations are often formalized as instances of graph transforma-
tions. While this approach is intuitive and shifts the problem into an extensive
and well-known theory, its realization in Isabelle/HOL poses a number of dif-
ficulties. Problems already arise when trying to formalize models as instances of
metamodels in HOL. A metamodel entails a number of structural constraints on
its instances, while a graph just consists of arbitrarily connected nodes. Meta-
model constraints have to be expressed as additional axioms about the structure
of the graph, like “Nodes with a type of State can only be directly connected to
nodes of type Transition”. Even small metamodels will result in graph types
encompassed by long lists of such axioms. Defining semantics and conducting
proofs on these structures is tedious and, more importantly, the derivation of
axioms from metamodels is not straight-forward, has to be done manually and
is thus error-prone.

For these reasons, we chose a different formalization of metamodels that
comprises all the structural information directly in a type definition. This makes
proofs simpler and significantly more compact. At first, we create a modified
version of the metamodel with an ordered, tree-like structure. This structure
can always be achieved by, for example, converting circular compositions to
reference attributes. Fig. 6 shows the result for a part of the metamodel of the
employed automata presented in Fig. 3.

Fig. 6. Part of the modified metamodel for automata

This kind of “flattened” model can be mapped to a type in Isabelle/HOL
using only constructs like records, lists and other primitive data types. The
nature of this mapping is straight-forward and might be implemented as an
automatic procedure in the future. The result for the above metamodel is:

r e c o r d S ta t e =
I d e n t i t y : : BaseType
Outgoing : : Ou tgo i ngT ran s i t i o n l i s t
F i n a l S t a t e : : boo l

r e c o r d Ou tgo i ngT r an s i t i o n =
Target : : BaseType
Ac t i on s : : Act ionType l i s t
T r i g g e r : : Tr igge rType op t i on

Primitive (i.e. algebraic) types are a core concept of Isabelle/HOL. On
these types, we can easily define an operational semantics as a recursive func-
tion over the structure of the model. On this semantics, we define a bisimula-
tion ≈, formalizing the notion of semantic equivalence. In many cases, semantic
equivalence is just defined as (statewise) equality; however, different semantic
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domains of source and target model might require a more abstract comparison.
Our definition of semantics and semantic equivalence is shown in detail in [21,
22].

We view rules of a triple graph grammar not as specifications of transfor-
mations on a single graph, but as pairs of productions describing a way that
two models are simultaneously modified. This allows for an easy and elegant
formalization in Isabelle/HOL. Fig. 7 shows the pair of graph productions
corresponding to the triple graph grammar rule that maps states to case state-
ments (shown in Fig. 4).

Fig. 7. View of the triple graph grammar rule in Fig. 4 as a pair of productions

This interpretation captures the bidirectional nature of TGGs by interpreting
them as a grammar for the parallel evolution of source and target model. For each
of these productions we can now define an operator, called modifier, on source
and target model. We formalize the application of a transformation rule as a
parallel application of the corresponding modifiers to both models. For example,
for the productions above, we define modifiers for automata and PLC programs
that add a state or a case statement, respectively:5

A⊕ s ≡ AL States := (States A) · s M
P ⊕ c ≡ PL MainProgram := c · (MainProgram P) M

For the correctness of each transformation rule it then suffices to show that
the application of the modifiers will not destroy semantical equivalence of models.
For example, if we add a state to an automaton and a corresponding case block
to a semantically equivalent PLC program in the Structured Text programming
language, automaton and program remain equivalent:

A ≈ P =⇒ ( A⊕ s ) ≈ ( P ⊕ State2Case(s) ) (1)

5 Here, the Isabelle/HOL operator L... := ...M is used to update the specified member
of a record. The operator · appends elements to lists.
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In effect, we show that semantical equivalence is a congruence with respect
to every transformation rule. The proof for the above lemma is straight-forward,
since neither the new state nor the new code segment will be reachable. How-
ever, more complex rules require more elaborate proofs. For example, the proof
for one variant of the TGG rule Action2Code that adds actions to transitions
(and inserts PLC code in the appropriate location in the program) requires over
100 lines of proof code6 in ISAR notation [23] and makes use of 15 additional
helper lemmas. In total, the proof of the correctness of the transformation from
automata to a PLC language contains approximately 1500 lines of proof code.
Table 1 shows the distribution of lines of proof code for the different parts of the
proof.

Table 1. Lines of Isar proof code for different parts of the proof

Mapping

Automata formalization 170

SCL formalization 259

TGG rule formalization 302

Rule Correctness Proofs

Definition of semantic equivalence 42

The Axiom rule 22

The State2Case rule 81

Two variants of Transition2Code 328

Two variants of Action2Code 276

5 Next Steps

To realize the vision of MDD by means of verified model transformations, the
presented results are a first step. We discuss in this section required next steps
we plan to address.

Rule correctness lemmas of the simple form as presented in Section 4 will
not always be provable. TGG rules are not applicable on arbitrary patterns in
the source and target graph, but rely on the correspondence graph created by
previous rules. For example, adding a transition to a state of an automaton and a
corresponding code segment to a case-block of a PLC program will only preserve
semantic equivalence if the state and the case-block themselves correspond to
each other, i.e., were created by a pair of modifiers. In fact, in the example
lemma (1) the correspondence is hidden in the Function State2Case, which
creates a case block with the same identifier as the state s. This results in
additional preconditions, which we call correspondence preconditions, for the rule

6 Note that proofs in Isabelle/HOL cannot be done automatically and that the vast
majority of proof steps needs manual interaction.
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correctness lemmas. At the moment, we tackle this problem by introducing the
correspondence preconditions manually. We aim to show that these preconditions
indeed result from previous rule applications. A possible solution makes use of
the set of all models introduced by successive application of all the rules in a
TGG grammar, which would enable us to conduct proofs about the relationships
between rule applications.

In addition to a proof technique, also the methodological aspects of verifying
model transformation have to be addressed. We therefore plan to elaborate the
design and verification process for model transformations and develop automated
or semi-automated tool support for the required activities where possible.

A first planned extension is to automatically derive the formalization of the
metamodels and TGG rules in Isabelle/HOL which accounts for nearly 50%
of the lines of proof code. We also want to explore how we can combine the
interactive theorem proving with available automated verification approaches
for finite and infinite graph transformations already present in Fujaba [24] in
order to reduce the effort for the verification of a model transformation.

6 Conclusions

Model-driven software development, especially with domain-specific languages,
is increasingly important to automatically develop software that adheres to its
specification. In this paper, we have shown how model-driven software develop-
ment is applied in the context of flexible production systems. These systems and
their transformations are specified within the Fujaba Tool Suite using triple
graph grammars (TGGs). TGGs are a special form of graph grammars that
allow us to specify the parallel evolution of systems, namely of the source (or
model) system and the target system (its implementation). We have presented
results of ongoing work how such transformations can be formalized and verified
in the Isabelle/HOL theorem prover. This is an important step towards fully
verified model transformations, which are necessary to guarantee correctness of
the generated implementations of the specified models.
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Abstract. This paper presents a technique to model check UML spec-
ifications by translating UML models to the model checker SPIN. Our
models consist of active UML classes, whose behavior is defined by hierar-
chical state machines. The intended application is to find errors in pro-
tocols communicating using asynchronous message passing. Compared
to previous efforts using a similar approach, our novel points are the
following. First, we consider a subset of UML that in our opinion is
expressive enough for protocol models but allows a simpler translation
to SPIN than existing work. Preliminary analysis of simple industrial
models support our conclusions on the expressivity of our UML subset.
Second, we present a powerful action language that is still amenable to
automatic analysis. The action language is used to specify the effects of
transitions, which may include dynamic creation of new objects. Finally,
we discuss an even simpler SPIN translation for flattened UML state
machines and compare it to the translation that supports hierarchy.

1 Introduction

Model-based approaches for system design have been studied for a long time.
Advantages associated with model-based approaches are several. Models give
designs a restricted implementation independence, and they also provide a con-
venient form of documentation. However, arguably the most important benefit is
that the level of abstraction of the design is raised. This has many implications.
Abstract models allow efficient communication of the design, since unnecessary
details are hidden. They also facilitate testing and verification of the design at
an early stage, the topic of this paper. The widely acknowledged benefit of this is
that it is much cheaper to detect and correct software errors early in the design
process.

We report preliminary results from a project, where the goal is to find er-
rors in protocol designs using model checking. In our approach, the protocols
are modeled using UML class diagrams and state machines. The Unified Mod-
eling Language (UML) is a standardized graphical notation for modeling and
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documenting object-oriented software and business processes. UML is also the
most widespread software modeling language, and it is accepted in the industry
as the standard language for software analysis and design. UML state machine
models can fairly naturally capture protocol designs, where the communication
is asynchronous and data can be abstracted with the class subtyping mechanism.

Our approach to model checking UML designs is based on using the state-
of-the-art model checking tool, SPIN [1]. Models with assert specifications are
automatically translated to SPIN’s input language, and counterexamples can
be simulated. More advanced properties can be specified in the SPIN model as
temporal logic formulae.

Our work improves or differs from previous work in the following ways. The
subset of UML we support has specifically been chosen to be expressive enough
for our intended application, modelling protocols, yet it allows a precise and
fairly simple formal semantics. We present an action language, which is used
to specify effects of transitions, that is powerful and amenable to automatic
analysis. Supported features include dynamic creation of objects, the usual flow
constructs, and arithmetic expressions. We also discuss a simpler SPIN transla-
tion for flattened state machines and compare it to the translation that supports
hierarchy.

2 Related Work

The idea of applying model checking on UML-type state machine models is
not new. Latella et al. [2] present a translation from UML state machines to
PROMELA, the input language of SPIN. They only allow a model to contain a
single state machine. In another translation by Mikk [3], the input language is
not UML but statecharts, which is a similar formalism with different semantics.
Perhaps the closest work to ours is [4] which presents a tool called vUML that
translates UML to PROMELA. vUML supports a larger subset of UML than
our approach. This, however, has the effect that the translation of a UML state
machine is more complex; it requires a code block that chooses the transitions to
be fired and another block that models the effects of transitions. All these works
have the limitation that no data attributes can be associated with objects or
state machines. Consequently, there is no action language, and the only possible
effect of a transition is to send signals with no parameters.

The Hugo project [5] also supports SPIN as a back-end to verify UML models.
Their initial PROMELA translation was only feasible for very small models, and
the current version of the tool follows ideas similar to those in vUML. To our
knowledge, the translation is undocumented. In [6], SPIN is used to generate
test cases from abstract state machines. The OMEGA project [7] has created a
tool set focusing on real-time properties. Their approach is based on translating
UML to the IF intermediate language that has several model checking back
ends. The Rhapsody UML verification environment [8] supports model checking
of UML state machines by translating the models to the input language of the
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VIS symbolic model checker. Most UML constructs are supported, and the action
language is a restricted subset of C++. Features that are not supported include
deferred events and do activities.

3 UML Subset and Semantics

In our framework, a UML model contains classes, state machines, and deploy-
ment diagrams. Classes may contain instance attributes, i.e. data values asso-
ciated with objects, and there may be associations between classes. Operation
calls are not supported. Also, a class cannot be a subtype of another class, but
we are planning to incorporate support for subtype relationships. We assume
that all classes are active classes whose behavior is defined by behavioral state
machines, discussed below. At run-time, objects communicate with each other
asynchronously using signals. Signals may have associated parameter values. A
deployment diagram is used to specify the initial configuration of objects.

3.1 A Well-Defined UML State Machine Language

Compared to standard UML state machines, we consider a subset. This is mo-
tivated by the need of a precise behavioral design language that can be verified
efficiently.

UML offers two mechanisms for modeling concurrency: active objects commu-
nicating with signals, and orthogonal regions in the state machine of an object.
We argue that the first approach is often preferable in an object oriented set-
ting, where it is more natural to put emphasis on communicating objects (which
can be dynamically created) instead of concurrent behavior within a single ob-
ject. Indeed, the commercial UML tool Telelogic Tau [9] does not even allow
orthogonal regions in state machines.

Our subset allows orthogonality, but we propose a restriction that no two
transitions in orthogonal regions can be enabled by the same event. We argue
that this violates the idea of orthogonality and creates complicated dependencies
that are hard to understand and analyze. Together with execution semantics in
which at most one completion transition (transition without an explicit trigger)
is fired at a time, the restriction guarantees that at most one region changes
its state in each step. This corresponds to interleaving execution semantics suit-
able for the SPIN model checker, and results in a simple implementation of the
transition selection algorithm.

UML allows continuous do activities in states, but we omit them because
the model checker executes models in discrete steps. Furthermore, we do not
currently support history pseudostates, fork or join pseudostates, or entry or
exit activities in states. These are advanced modeling concepts that could later
be incorporated to our framework.

In the following, the structure of state machines is formalized.
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3.2 Structure of State Machines

A state machine contains states and transitions between them. A composite
state contains one or more orthogonal regions, which in turn contain substates.
During execution, one or more states are active. If a composite state is active,
then exactly one direct substate in each region is active. Whenever a substate is
active, its containing composite state is also active.

Let Σ be a finite set of states consisting of simple states Σsimple, initial pseu-
dostates Σinitial, choice pseudostates Σchoice, final states Σfinal, and composite
states Σcomposite, and let R be a finite set of regions. We define a child relation
↘ such that if a region r of a composite state c directly contains a state s, then
c↘ r and r ↘ s.

Definition 1. A tuple H = 〈Σsimple, Σinitial, Σchoice, Σfinal, Σcomposite,R, top,↘
〉 is a state hierarchy iff ↘⊆ Σcomposite×R∪R×Σ, and 〈Σ ∪R,↘〉 is a tree
rooted at top ∈ R such that the set of leaves of the tree is Σ \Σcomposite.

The inverse relation of ↘ is the function parent : Σ∪R\{top} → Σcomposite∪
R, giving the parent region of a state or the parent composite state of a non-top
region. Thus, the direct substates of a composite state c are the states s such
that parent2(s) = c. The set of proper descendants of a state or region v is
defined by descendants(v) = {v ′ ∈ Σ ∪ R | v ↘+ v ′}, where ↘+ denotes the
irreflexive transitive closure of ↘.

Two states s1, s2 ∈ Σ are orthogonal, denoted s1 ⊥ s2, iff there are regions
r1, r2 ∈ R such that r1 6= r2, parent(r1) = parent(r2), s1 ∈ descendants(r1),
and s2 ∈ descendants(r2). A set S ⊆ Σ is consistent iff for any two distinct
states s1, s2 ∈ S either s1 ⊥ s2, s1 ∈ descendants(s2), or s2 ∈ descendants(s1).
In particular, the set of active states in a state machine is always a maximal
consistent set, i.e. a consistent set that is not a proper subset of any other
consistent set.

Consider the state machine diagram shown in Fig. 1. States A and Loop
are orthogonal, thus they can be active at the same time. In this situation, the
entire set of active states would be {Main,A,Loop}. Notice that regions are
not explicitly drawn in diagrams. Instead, the regions of a composite state are
separated by a dashed line, and the top region contains the entire diagram.

A state machine transition is defined as follows. First, we assume the existence
of a finite set of signals E , an expression language Lg for expressing guards, and
an action language La for expressing effects. The languages are discussed in
Section 3.5.

Definition 2. A transition over a given state hierarchy is a tuple t = 〈s, e, g , a,S ′〉 ∈
(Σ \ Σfinal) × (E ∪ {τ}) × Lg × La × 2Σ such that there exists a region r ∈
R for which S ′ is a maximal consistent subset of descendants(r) and s ∈
descendants(r), and if s ∈ Σinitial ∪Σchoice then e = τ . We define source(t) =
s, trigger(t) = e, guard(t) = g, effect(t) = a, targets(t) = S ′, and container(t) =
r.
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Failure
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$tick[x>0]/x=x−1;
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e t4: /a=true;
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t9: e[a==true]

Main

t1: /x=10;
a=false;

[x==0]

Fig. 1. Running example.

In the graphical UML notation, a transition is shown as an arrow from the
source state to the main target state. A transition has a text label name: trigger
[guard ] /effect. Any of the four parts may be omitted.

A transition t has a source state source(t) and a set of target states targets(t).
In the simple case, targets(t) is a singleton set, but if the main target is a compos-
ite state, then we assume that targets(t) also contains the initial states entered
by the transition. For example, source(t4) = B in Fig. 1, targets(t4) = {F1},
source(t9) = Main, and targets(t1) = {Main, I1, I2}. The intuition behind
container(t) is that it is the smallest region containing all the states exited
or entered by the transition.

A transition can be fired only if an occurrence of its triggering event is dis-
patched. The trigger trigger(t) is a signal name if the transition is triggered by
the reception of a signal, or the special symbol τ if the transition is a comple-
tion transition. The symbol τ is omitted in diagrams. A transition also has an
associated guard guard(t), which defaults to true if it is omitted. The guard is
a side-effect free Boolean expression giving a precondition for firing the transi-
tion. A transition may have an effect effect(t) that is executed upon firing the
transition. The default effect is to do nothing.

If an event occurrence is dispatched but it does not cause any transitions to
be fired, the event can be deferred and dispatched again later. This happens if
the event is designated deferrable by one of the active states. Thus, we define a
mapping deferrable from states to subsets of the set of signals E .

Definition 3. A UML state machine is a tuple 〈H , Φ, deferrable〉, where H is
a state hierarchy, Φ is a set of transitions over H , and deferrable : Σ → 2E .

3.3 State Configurations

A completion transition is triggered by an implicit completion event that is
generated when the source state finishes all internal activity. For a pseudostate
or simple state, this happens (in our UML subset) immediately when the state
becomes active. For a composite state, a completion event is generated when all
regions have reached their final states.
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Instead of maintaining a queue of completion transitions, we associate equiv-
alent information with each active state. We mark an active state busy if a
completion event for the state has not yet been dispatched. An active state is
quiescent iff it is not busy, i.e., iff a completion event has been dispatched without
firing any completion transitions.

Definition 4. A state configuration over a state hierarchy is a pair 〈A,Q〉,
where the set of active states A is a maximal consistent subset of Σ and Q ⊆ A
is the set of quiescent states.

A busy state is completed if, conceptually, a completion event for the state
has been generated but not yet dispatched. Thus, a busy state is completed iff
it is a non-composite state, or a composite state whose active substates are all
quiescent final states.

Definition 5. The set of completed states in a state configuration C = 〈A,Q〉
is

completed(C ) = {s ∈ A \Q | descendants(s) ∩A ⊆ Σfinal ∩Q}.

When a composite state c becomes active during execution, it is first busy and
not completed. If all regions of the state reach their final states, then c becomes
busy and completed and, conceptually, a completion event is generated. After
that, it is possible to either (i) fire a completion transition whose source is c and
whose guard is true, or, if there is no such transition, (ii) consume the completion
event and make c quiescent. If c has become quiescent, no completion transitions
from c will be fired because the completion event has already been consumed.
This behavior fulfills the requirement of UML that the guards of completion
transitions leaving a state are evaluated only once after the state has become
completed.

If c above is replaced by a non-composite state s, the behavior is similar
except that the phase of s being busy and not completed is skipped.

The initial state configuration of a state machine is 〈{s}, {}〉, where s ∈
Σinitial and parent(s) = top. The model is ill-formed unless there is exactly one
such s.

3.4 Transition Firing Dynamics

In general, a UML state machine instance moves from a state configuration to
another by firing a maximal conflict-free set of enabled transitions. However, we
have chosen to make the restriction, as discussed in Sect. 3.1, that orthogonal
regions may not contain transitions triggered with the same signal. Formally, if
t1, t2 ∈ Φ and trigger(t1) = trigger(t2) 6= τ , then ¬ (source(t1) ⊥ source(t2)).
It follows that the maximal conflict-free set contains at most one transition.

A transition t is enabled by an event occurrence iff the event matches the
trigger of t , the source state of t is active, and the guard of t evaluates to true.
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If an enabled transition t is fired, the resulting state configuration is obtained
by first removing source(t) and any other descendant states of container(t)
from the sets of active states and quiescent states, and then adding targets(t)
to active states. Nothing is added to the set of quiescent states because all new
active states are busy.

Definition 6. Let C = 〈A,Q〉 be a state configuration and let t ∈ Φ be a
transition such that source(t) ∈ A. The next state configuration associated with
t and C is

nextstateconf(t ,C ) = 〈(A \ S ) ∪ targets(t),Q \ S 〉,

where S = descendants(container(t)).

A completion transition is enabled iff its source state is active, busy, and com-
pleted, and the guard condition is true. If there is an active, busy, and completed
state s that is not the source state of any enabled completion transition, we say
that a quiescing step quiesce(s) is enabled. The only effect of firing the quiesc-
ing step is to make s quiescent, which corresponds to implicit consumption of the
completion event for s. If there are any enabled completion transitions or qui-
escing steps, one of them is chosen nondeterministically for firing and (according
to UML) only if there are none, signal-triggered transitions are considered.

Given a state configuration and an event occurrence, it is possible that several
transitions are enabled. However, some of these are ruled out based on UML
semantics, which states that transitions deeper in the hierarchy have priority.
Priority also applies to deferral of events, but not to completion transitions
because no busy, completed state can be a descendant of another one.

Definition 7. Let T be the set of transitions enabled by an event e in a state
configuration 〈A,Q〉 and let S = {source(t ′) | t ′ ∈ T}∪{s ∈ A | e ∈ deferrable(s)}.
The set of prioritized transitions is

prioritized(T ,A) = {t ∈ T | descendants(source(t)) ∩ S = ∅}.

Because A is a consistent set of active states and the restriction on triggers in
orthogonal regions holds, every t ∈ prioritized(T ,A) has in fact the same source
state. One transition in the set is chosen nondeterministically for firing.

3.5 Action Language

In our subset of UML state machines, an action language is used in two roles,
namely to specify the guard constraints and the effects of transitions.

The choice of an action language is connected to the level of support for
various UML model elements. The minimal level is to allow sending signals to
objects. Our action language supports more than this, e.g. attributes of objects
and dynamic creation of new objects. The action language supported by our
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PROMELA translation is a subset of the Jumbala action language [10]. Jumbala
is an object-oriented language that could be characterized as simplified Java
tailored to the UML framework. The language is strongly typed with int (32-
bit signed integer) and boolean primitive types and object reference types.

In state machines, the effects of transitions are lists of Jumbala statements,
and the transition guards are boolean expressions. Below is a list of the kinds of
statements supported by the PROMELA translation. The syntax and semantics
follow the conventions of the Java programming language, with an added send
statement.

– Assignments of the form ’lhs = rhs;’.
– If statements of the form ’if (condition) { truestmt } else { falsestmt }’,

where condition is a boolean expression. The else part may be omitted.
– Iteration statements of the form ’while (condition) { stmt }’.
– Send statements of the form ’send signalname(paramvalues) to object;’.

A send statement places a signal event signalname in the input queue of
object. Values for signal parameters are given as a comma-separated list.

– Assertions of the form ’assert condition;’.

The following kinds of Jumbala expressions are supported. Below we assume
that obj is the object in whose context the guard or action is evaluated.

– 32-bit decimal integer literals.
– The boolean literals true and false.
– The expression this, which is a reference to obj .
– Names of the form identifier or identifier.identifier. A name can resolve to

either an object reachable from obj by following links (association instances),
or an attribute.

– Infix expressions of the form leftexpr op rightexpr. The binary operator op
can be one of +, -, *, /, %, &, ^, |, >, <, >=, <=, ==, !=, <<, or >>. The
semantics of operators is the same as in PROMELA.

– Instance creation expressions of the form new classname(). The state ma-
chine of the newly created object begins executing automatically.

3.6 Execution of Models

At a given moment in time, the system is in a state that, as a whole, conforms
to the UML model. We call this state the global configuration of the system. A
global configuration consists of a set of objects, where each object obj contains
the following information.

1. The values of the instance attributes of obj.
2. The links that are navigable from obj, pointing to other objects.
3. The state configuration of the state machine of obj, denoted obj.stateconf .
4. The input queue of obj, which we denote by obj.inputqueue.
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while true:
pick an object obj
〈A,Q〉 := obj.stateconf
sources := completed(obj.stateconf)
compl := {t ∈ Φ | source(t) ∈ sources ∧ trigger(t) = τ ∧ evalguard(obj, t , 〈〉)}
enabled := compl ∪ {quiesce(s) | s ∈ sources ∧ 6 ∃ t ∈ compl such that s =

source(t)}
if enabled 6= ∅:

if enabled ∩ Φpseudostate 6= ∅:
enabled := enabled ∩ Φpseudostate

pick t ∈ enabled
if t = quiesce(s) for some s:

obj.stateconf := 〈A,Q ∪ {s}〉
else:

execute effect(t) in the context obj
obj.stateconf := nextstateconf(t , obj.stateconf)

else if obj.inputqueue is not empty:
remove the first element 〈e, params〉 from obj.inputqueue
enabled := {t ∈ Φ | source(t) ∈ A ∧ trigger(t) = e ∧ evalguard(obj, t , params)}
if prioritized(enabled,A) 6= ∅:

pick t ∈ prioritized(enabled,A)
assign(obj, t , params)
execute effect(t) in the context obj
obj.stateconf := nextstateconf(t , obj.stateconf)
push obj.deferredqueue in front of obj.inputqueue
obj.deferredqueue := empty

else if ∃ s ∈ A such that e ∈ deferrable(s):
append 〈e, params〉 to obj.deferredqueue

Fig. 2. Execution Algorithm for UML Models

5. The deferred queue of obj, denoted obj.deferredqueue.

The last two elements are FIFO queues whose elements are signal event
occurrences represented as pairs 〈e, params〉, where e ∈ E is a signal name and
params is a tuple of signal parameter values.

The algorithm in Fig. 2 illustrates the execution of a model. In one step of ex-
ecution, one object is nondeterministically chosen. If any completion transitions
or quiescing steps are enabled, then one of them is fired. Otherwise, an event
occurrence is removed from the input queue and a prioritized enabled transition
is fired. If no such transition exists and the event is not deferrable, the event oc-
currence is implicitly consumed. In transition selection, transitions whose source
state is an initial or choice pseudostate (the set Φpseudostate) are preferred to
other completion transitions.

In order to handle signal parameters, the algorithm uses the following auxil-
iary procedures.
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– assign(obj, t , params) modifies the global configuration by assigning the val-
ues in the tuple params to the instance attributes of obj. The attributes
receiving the new values are named in the trigger of the transition t .

– evalguard(obj, t , params) evaluates guard(t) in the context of object obj.
The values of params are assigned as if assign(obj, t , params) had been
executed, for the duration of guard evaluation. After evaluation, the original
attributes are restored and a truth value is returned.

The execution algorithm is such that in one step a single transition in any
object is fired, and in the next step a transition in another object might be fired.
We call this transition segment granularity. Alternatively, it would be relatively
straightforward to modify the algorithm to use compound transition granularity,
so that one step of execution would correspond to a compound transition, i.e. a
sequence of transition segments with only pseudostates between them. A third
possibility would be run-to-completion granularity, where the firing of a signal-
triggered transition in an object is followed by as many completion transitions
or quiescing steps as possible in the same object before executing transitions in
other objects.

4 Translation to PROMELA

This section presents our main contribution, the translation to PROMELA. It
translates the active classes and their state machines to corresponding PROMELA
processes, and uses the deployment diagram to infer the initially active ob-
jects and how their associations to other active objects are set. The resulting
PROMELA program can be checked for deadlocks or assertion violations in the
model. If an error is found, the error trace can be simulated in the UML model
by using a separate model simulator.

Our translation requires the user to supply information about the model
that is otherwise hard to infer: (i) the size of the input and deferred queues
(qsize), and (ii) the maximum number of instances of a each class (maxids). It
is relatively easy to augment the PROMELA translation to check whether these
limits are exceeded, and give an error requesting the user to increase them if this
happens.

4.1 SPIN and PROMELA: Brief Introduction

PROMELA (PROcess MEta LAnguage) is the input language of the tool SPIN [1]
initially developed in Bell Labs by Gerard Holzmann et al. The language allows
for the dynamic creation of processes and both synchronous (rendezvous) and
asynchronous communication through communication channels.

The PROMELA language is rather rich, however our translation does not
need most of the features. The elements that we use are briefly presented. The
queue (asynchronous channel) operations are as follows. The send command
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q!v1,...,vn appends the queue q with the message comprised of the values v1,...,vn.
Similarly, the receive command q?v1,...,vn reads the first message from the queue
(or blocks if the queue is empty). A central part of our translation is the if. . . fi
compound statement that can for instance be as follows:
if

:: (a == 1) -> a = a + 1;
:: (a == 0) -> a = 1;
:: else -> a = 0;

fi
The statement above defines a simple selection construct with three option se-
quences, each starting with a double-colon. Each option sequence starts with a
guard (in our example, the first guard is (a == 1)). This guard must evaluate
to true so that this option sequence can be executed. If several guards evalu-
ate to true, then one of them is chosen nondeterministically and the associated
commands are executed. The else sequence (if present) is chosen iff the guards
of every other sequence evaluate to false.

Normally, the scheduled object in SPIN can change after each command.
However, if this is not desired, it can be prevented by enclosing several commands
inside an atomic block (with the keyword atomic). We also use this feature.

4.2 Global Variables and Initialization Block

The global variables of the PROMELA specification are the input queues and
deferred queues for each class. These are arrays with maxids slots. The asso-
ciations for each class are also stored in a similar table. Finally, for each class,
there is an integer that stores the process number of the last created instance of
that class.

The initialization of the active processes (the structure of the PROMELA init
block) is as follows. Each active object (declared in the deployment diagram) is
processed in turn. First, its associations are configured by setting the values in
the global association table and then the object is started with the command
run with its process id as the argument. In order to maintain scheduling in the
init-process, these commands are enclosed inside an atomic block. For instance,
the left-hand side of Fig. 3 shows a deployment diagram describing an initial
configuration of a model. It has two objects, a and b, that are instances of the
active class “class1” and the initializations of the association “myPeer” from
“class1” to itself. The right hand-side of Fig. 3 gives the PROMELA translation
of the diagram.

4.3 Translation of State Machines

Figure 5 gives a skeletal translation of the state machine in Fig. 1.
Each class is translated to a PROMELA process (a proctype declaration,

like line 4 in Fig. 5). This process has one argument, the instance number of
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b:class1

a:class1

myPeer

myPeer

#define MAXIDS 2
int class1 myPeer[MAXIDS];
int class1 pid = 0;
init {

atomic {
class1 myPeer[0] = 1;
run class1(0); /* Start active object a */
class1 pid = class1 pid + 1;
class1 myPeer[1] = 0;
run class1(1); /* Start active object b */
class1 pid = class1 pid + 1;

}
}

Fig. 3. An initial configuration and its PROMELA translation.

the created object. The first instance gets the number zero and the maximum
number of instances is user specified. The instance attributes of the class and
integer variables encoding the state configuration of each region in state machine
of the class are declared first.

The main loop encoding the state machine is divided into two parts, evalcom-
pletions and evaltriggers for completion and signal-triggered transitions, respec-
tively (lines 11 and 34 in Fig. 5). This division is due to the fact that according
to UML semantics, completion transitions have priority over signal-triggered
transitions. Therefore the PROMELA code follows the following idea. First, fire
completion transitions as long as possible. Then, consume a signal event from the
event queue (or wait until the queue becomes non-empty), fire a signal-triggered
transition, and go back to trying to fire completion transitions.

In order to handle completion transitions correctly without actually gen-
erating completion events and having a queue (with priority over the normal
signal event queue) for them, we use the concept of busy and quiescent states
introduced in Sect. 3.3. That is, for each simple and composite state that has
outgoing completion transitions, we have two possible values in the PROMELA
state vector (e.g. s Top Main busy and s Top Main in the code in Fig. 5). Com-
pletion transitions are only evaluated if the state is marked busy. As pseudostates
only have outgoing completion transitions, there is no need for such additional
information for them.

The general structure for the block evaluating whether a completion tran-
sition can be fired is fairly simple as there is no need to take the transition
priority caused by the hierarchy into account. In order to first fire completion
transitions leaving from a pseudostate, the block consists of two consecutive,
similar sub-blocks: the first only considers pseudostates (lines 12–21 in Fig. 5)
while the second (lines 22–33) takes care of the simple and composite states.
Both sub-blocks are just large if. . . fi blocks with one option sequence for each
(pseudo)state with outgoing completion transitions. Each option sequence first
checks whether the (pseudo)state in question is active (and busy and completed
if it is a simple or composite state), and then non-deterministically chooses a
completion transition whose guard is true. If there was no such completion tran-
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sition, then (i) a quiescing step is taken if the state was simple or composite, or
(ii) following UML specifications, an error is reported if the state was a pseu-
dostate.

The code for signal-triggered transitions (lines 35–57) starts with a con-
sumption of a signal event from the queue, or non-deterministic generation of
an external signal if the state configuration is in a state that can consume an
external signal event. 5 The general structure for evaluating whether a signal-
triggered transition can be fired is a large if. . . fi block (lines 40–57) with one
option sequence for each state in the top level state machine. The guards for the
option sequences are simply checks of whether a particular state is active. The
option sequence then depends on whether the state is simple or composite. If
the state s is composite, a nested if. . . fi block follows (for example lines 42–50
in Fig. 5), this time containing an option sequence for all the children of s. After
this (possibly empty) block, a subsequent if. . . fi block evaluates for each out-
going signal-triggered transition whether (i) the trigger matches the consumed
signal event, and (ii) the guard evaluates to true.

In both blocks described above, the code for firing a transition is similar.
The encoding of the effect of the transition (a sequence of Jumbala statements)
is presented in detail in Sect. 4.4. The translation of each transition is finished
with PROMELA code that sets the new active state to be the target state of the
transition. For composite states, we also have to set its regions to their initial
states. If the target state has outgoing completion transitions, then the state is
marked busy. After this, the control flow is transferred to the beginning of the
block evaluating completion transitions.

4.4 Translation of Action Language

The supported constructs are presented in Section 3.5. Now, we describe their
translation to PROMELA. The translation of simple assignments is simple, both
variable declarations and assignments are syntactically similar in PROMELA
and Jumbala.

Queue operations are used to send messages to active associations of an object
or to read messages from its input queue. In order to manage the dynamic
creation of new instances we store the associations of objects as well as their
input queues in a global array. Each entry in an array of a particular association
is an instance number. Thus sending a message along an association requires
accessing this array with the instance number of the process to obtain the target
object. The message is then sent to the input queue of this object.

New objects are created as follows. There is a global variable that is one
greater than the instance number of the last created instance. This number is
used to set the associations of the new object (entries in the global arrays). Then

5 An external signal is a signal with no parameters and whose name starts with a
$-sign. It can be non-deterministically generated by the environment of the UML
model. Such signals are convenient when modeling open or underspecified systems.
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the appropriate proctype is called with the instance number. Finally, this number
is incremented.

We also support the if. . . else if structure of Jumbala by simulating this with
the PROMELA if. . . fi structure. The constructs are different in that in Jum-
bala, the executed branch is the first one where the guard evaluates to true. In
PROMELA, any branch whose guard evaluates to true can be chosen. However,
this is easy to simulate by introducing Boolean flags that guarantee that if a
particular guard evaluates to true, then all the preceding guards evaluate to
false. The while statement is translated to a PROMELA do. . . od structure. This
translation is straightforward.

Finally, it should be noted that the code in Fig. 5 does not accurately model
scheduling of objects. Indeed, if this code were a part of a larger concurrent
system, the system would have too many behaviors since SPIN could change the
scheduled object in the middle of the execution of a UML transition. This omis-
sion is intentional due to lack of space and the fact that UML semantics does
not define scheduling policy (see discussion at the end of Sect. 3.6). One can for
instance allow an object to fire only a single transition or fire completion tran-
sitions until a stable configuration is reached. Both of these scheduling policies
(and others) can be implemented using the PROMELA atomic statement.

c3

c1 c2

e

$tick[x<10]

/a=true;

e /a=true;

$tick[x<10]

[!(x==0)]

[x==0]

e[a==true]

$tick[x>0]/x=x−1;
e[a==true]

s1

s2 s3

s4 s5

s6

s7

s8

$tick[x>0]/x=x−1;

/x=10;a=false;

Init

F

Fig. 4. The flattened version of the state machine in Fig. 1.

4.5 Flat State Machines

An interesting idea is to consider the case where UML state machines are flat-
tened. Intuitively this means that hierarchical states are replaced with several
simple states so that the behavior of the system is the same, Fig. 4 shows the
flattened version of the state machine in Fig. 1. For flat state machines, we pro-
pose a translation where the state vector of SPIN is made shorter by removing
the variables storing the component states. Instead, the PROMELA code has
a label for each state of the flattened machine which is followed by an if . . . fi
block for its outgoing transitions. If a transition is fired, control flow is set to the
transition’s target state by using a goto statement to the corresponding label.
Whether or not this added simplicity compensates the potential blowup in the
state machine and PROMELA code sizes is a question we have yet to answer.
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5 Evaluation

We have implemented our translation in a tool called proco 6. Its input pa-
rameters are the UML (version 1.4) model in the XMI format supported by the
Coral tool [11], the maximum number of active instances of a class, and the size
of the input and deferred queues. The output is a PROMELA model.

We have tested the tool with several simple models. One of them models a
protocol consisting of an environment and two protocol entities, a sender and
a receiver. The environment initiates a session, after which the protocol enti-
ties shake hands. After the handshake, the protocol is running and the sender
forwards data signals from the environment to the receiver. Our initial model
contains a deadlock: the first data signal may reach the sender before the hand-
shaking is complete, and the data is lost. This can be fixed by simply deferring
the data signal in the state where the sender is waiting for the handshake. proco
is able to detect the deadlock and it is possible to simulate the corresponding
trace.

We have also applied proco to a simplified model received from an industrial
partner. The model portrays a client-server architecture at an abstract level,
using 4 active classes and a total of 33 state machine states. proco and SPIN
find a deadlock in the model, or prove the absence of a deadlock if the model is
modified, in fractions of a second, regardless of whether the model is flattened
or not.

To better assess the scalability of the approach, we need to obtain larger
models in XMI format and run experiments with them. We expect some of the
big challenges to be the handling of data and polymorphism. Our tool does
not currently support generalization of classes, and there are no arrays or pas-
sive classes representing data structures. Another possible issue is the efficient
handling of advanced state machine concepts such as history states.

6 Conclusions

This paper outlines an approach to model check UML state machines. Although
using SPIN as a back-end model checker has been tried before, our work differs
from previous work in that it focuses on a UML subset for protocol models. We
also support more action language features than some other previous work.

In the near future we plan to conduct case studies to evaluate our approach.
We are especially interested in evaluating whether flattening of state machines
can help analysis, and how PROMELA translations should be designed to in-
crease the efficiency of partial order reductions. We also wish to investigate
whether the subclassing mechanism of our action language can be used to sup-
port data abstraction.

Acknowledgements. This work has been financially supported by Tekes, Nokia,
Conformiq, Mipro, the Academy of Finland, and the Emil Aaltonen Foundation.
6 available at http://www.tcs.hut.fi/SMUML/
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/* constant definitions for all states, signals etc. */
#define s Top Init 0
...
proctype M(int proc id) {
5: byte state Top = s Top Init;

byte state Top Main R1 = s Top Main R1 None;
byte state Top Main R2 = s Top Main R2 None;
byte x; bool a; /* Instance attributes of the owning class */
byte trigger, p1, ...; /* for signal type & parameters */

10: xr inputqueues[proc id];

evalcompletions:
if /* Try to fire completion transitions from pseudostates */
:: (state Top == s Top Init) ->

x = 10; a = false; state Top = s Top Main busy; state Top Main R1 = s Top Main R1 Init;
15: state Top Main R2 = s Top Main R2 Init; goto evalcompletions;

:: (state Top Main R1 == s Top Main R1 Init) ->
state Top Main R1 = s Top Main R1 A; goto evalcompletions;

:: (state Top Main R2 == s Top Main R2 Init) ->
state Top Main R2 = s Top Main R2 Loop; goto evalcompletions;

20: :: else -> skip;
fi
if /* Try to fire completion transitions from real states */
:: (state Top Main R1 == s Top Main R1 B busy) ->

a = true; state Top Main R1 = s Top Main R1 Final; goto evalcompletions;
25: :: (state Top = s Top Main busy && state Top Main R1 == s Top Main R1 final &&

state Top Main R2 == s Top Main R2 final) ->
if
:: (x == 0) -> state Top = s Top Final; state Top Main R1 == s Top Main R1 None;

state Top Main R2 == s Top Main R2 None; goto evalcompletions;
30: :: else -> state Top = s Top Main; goto evalcompletions; /* Quiescing step */

fi
:: else -> skip; /* No completion transition was enabled */
fi
evaltriggers:

35: if
:: inputqueues[proc id]?trigger,p1; /* Consume signal event (if any) */
/* Non-deterministically create an external signal if in a state that can consume it */
:: (state Top Main R1 == s Top Main R1 Loop) -> trigger = signal $tick;
fi

40: if
:: (state Top == s Top Main busy || state Top == s Top Main) ->

if
:: (state Top Main R1 == s Top Main R1 A && trigger == signal e && true) ->

state Top Main R1 = s Top Main R1 B busy; goto evalcompletions;
45: :: (state Top Main R2 == s Top Main R2 Loop && trigger == signal $tick && x > 0) ->

x = x - 1; goto evalcompletions;
:: (state Top Main R2 == s Top Main R2 Loop && trigger == signal $tick && x < 10) ->

state Top Main R2 == s Top Main R2 Final -> goto evalcompletions;
:: else -> skip

50: fi
if /* Signal was not consumed by any substate of Main */
:: (trigger == signal e && a == true) -> state Top Main R1 = s Top Main R1 None;

state Top Main R2 = s Top Main R2 None; state Top = s Top Failure; goto evalcompletions;
:: else -> skip

55: fi
:: else -> skip;
fi
goto evaltriggers; /* implicit consumption occurred */

}

Fig. 5. PROMELA code of running example.
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Abstract. In a UML model, different aspects of a system are covered by
different types of diagrams and this bears the risk that an overall system
specification becomes inconsistent or incomplete. Hence, it is important
to provide means to check the consistency and completeness of a UML
model.
Many approaches for model validation and verification rely on gener-
ation of suitable code which dynamically (i.e., at run-time) checks the
validity of OCL constraints. This approach has several well-known draw-
backs. For example, it cannot generally guarantee that a constraint will
never be violated, unless an infinite number of tests is performed. On
the other hand, even more desirable static approaches are not immune
from weaknesses. The techniques based on model checking suffer from
the state explosion problem and thus cannot scale to most system sizes.
Moreover, the static approach is in general undecidable.
In this paper we propose a static verification framework based of Ab-
stract Interpretation techniques, a theory of approximation of mathe-
matical structures. This framework, by using OCL constraints together
with Class Diagrams, certifies that the dynamic part (Sequence Dia-
grams) of the model is satisfied. Our approach keeps the advantages of
static verification and, at the same time, avoids the weaknesses of the
other mentioned methods as it does not require users to build test scenar-
ios and also it can make undecidable methods decidable, up to a specified
level of precision.

1 Introduction

Finding program bugs is a long-standing problem in software construction. There
has been considerable theoretical research activities and published results start-
ing from the mid-nineties about using formal specifications to help the debugging
phase. All these theoretical efforts have produced also relevant practical results.
Indeed, the software engineering community has nowadays accepted the fact
that the specification of various kinds of pieces of software is not only a topic of
theoretical interest but also one of practical importance. A steadily increasing
number of papers dealing with the concepts and the practical use of assertions
in general have been published during the last few years (amongst all [1]). The
basic foundations have been laid by Bertrand Meyer with his concept of Design
by Contract (DbC) as realized in the Eiffel language (see [2, 3]). This approach



has then rapidly spread to other languages, for instance there emerged lot of
support for assertions for Java (e.g. Jass1, the iContract tool2, etc.) and C++
(e.g., C2 3, etc.). Most importantly, the Unified Modeling Language (UML) has
now, as one of its integral parts, the Object Constraint Language (OCL), which
has its root in the Syntropy method. With OCL we can naturally implement the
contract mechanism of Eiffel.

In a UML model, different aspects of a system are covered by different types
of diagrams and this bears the risk that an overall system specification becomes
inconsistent or incomplete. Hence, it is important to provide means to check the
consistency and completeness of a UML model.

Many approaches for system debugging and for model validation/verifica-
tion rely on generation of suitable code which dynamically (i.e., at run-time)
checks the validity of OCL constraints (i.e., the compliance of the system sta-
tus w.r.t. the constraint). This approach has several drawbacks. For example, it
undoubtedly slows down performance and can potentially alter the behavior (if
the inserted code has side effects by mistake). But most of all it does not ensure
to reveal a bug unless the specific run of the system effectively enters a state
which is not compliant w.r.t. the specification. One can argue that not all runs
are actually needed to manifest an error, since most symptoms (wrong traces)
are caused by the same error. However also the generation of just a significative
finite subset of the possible runs is not so feasible because, on one hand, a con-
siderable manual effort is needed even to produce a single test scenario and, on
the other hand, test-case generation is well-known to be a hard problem.

On the contrary static (semantics-based) tools could guarantee that any run
will be compliant w.r.t. the specification, without even adding extra overhead.
The problem with this approach is that it is in general (well-known to be) un-
decidable and, in any case, much more difficult to tackle.

Many researchers are proposing static approaches based on Model Checking,
but this suffers of the state explosion problem and thus (while suitable for pro-
tocols and small hardware systems) cannot scale to most software system sizes,
typical of (commercial) software production. Moreover there is also an inherent
limit to verification of a single specific property of the system at a time.

This paper is motivated by the fact that we believe we can attack the undecid-
ability of the static approach by using Abstract Interpretation techniques [4–9].
Abstract Interpretation is a theory of approximation of mathematical structures,
in particular those involved in the semantic models of computer systems. Ab-
stract interpretation can be applied to the systematic construction of methods
and effective algorithms to approximate undecidable or very complex problems
in computer science such as the semantics, the proof, the static analysis, the ver-
ification, the safety and the security of software or hardware computer systems.
In particular, abstract interpretation-based static analysis, which automatically

1 See http://semantik.informatik.uni-oldenburg.de/˜jass/.
2 See http://icontract2.org/.
3 See http://www.aechmea.de/html/german/Information01 e.htm.
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infers dynamic properties of computer systems, has been very successful these
last years to automatically verify complex properties of real-time, safety critical,
embedded systems.

We already had plenty of experience in Debugging and Verification of Declar-
ative Languages where, by using Abstract Interpretation techniques, we could
develop effective semantic-based tools [10–15]. The nice feature of this approach
is that it can discover bugs even in absence of symptoms. Moreover it does not
need a complete system to work, since we can (must) use, in place of missing
components, their specification to diagnose existing parts.

This could be the case also for most systems providing UML diagrams with
OCL specifications. However, given the level of complexity of such systems, it
can easily be the case that the UML diagram in itself is not consistent. This
would render the use of (complex), either static or dynamic, code diagnosis tools
completely pointless. Hence it is important to have a tool to statically check
the consistency of an UML model to achieve a good design even before the
implementation starts. It can help further debugging stages and it is important
in itself for Model Validation. This is even more important in Model Driven
Architecture (MDA) approaches where new diagrams and code are automatically
synthesized from the initial model: all the constructed artifacts would inherit
the initial inconsistency. These considerations lead us to propose the conceptual
framework described on the following.

The paper is structured as follows: in section 2 we introduce some concepts
about assertions in UML with OCL. In section 3 we present our Conceptual
Framework with an example to show how it works. Then in section 4 we discuss
about its applicability for development of software verification tools.

2 Assertions in the Software Engineering Practice

2.1 Design by Contract

In this section we will look how some of the concepts introduced above can be
transferred to software systems in practice. Design by Contract (DbC) [16] is
inspired by formal approaches embodied in specification languages such as Z
and VDM. Bertrand Meyer has coined the concept of DbC to denote a software
development style which (1) emphasizes the importance of formal specifications,
(2) interleaves them with actual code, and (3) makes these contracts executable.
DbC is a systematic method of assertion usage and interpretation introduced
as a standard feature of the Eiffel language [2]. Without it, no trial would have
ever been made to provide a similar mechanism in other languages and, by no
means, would we have discussion papers like this and the ones mentioned in the
references.

Software contracts have been invented to capture mutual obligations and
benefits among classes, as they are e.g. needed in design patterns, where each
of the involved classes is expected to exhibit a “proper” behavior [17, 18]. A
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software contract is the specification of the behavior of a class and its associated
methods. The contract outlines the responsibilities of both the caller and the
method being called. Failure to meet any of the responsibilities stated in the
contract results in a break of the contract itself, and indicates the existence of
a bug somewhere in the design, in the implementation, in both of them, or -
one must not forget this possibility in earlier project phases - in the assertions
themselves. Software contracts can be completely specified through the use of
preconditions, postconditions, and class invariants in object-oriented software.
DbC views software construction as based on contracts between clients (callers)
and suppliers (routines). Each party expects some benefits from the contract, and
accepts some obligations in return. As in human affairs, the contract document
spells out these mutual benefits and obligations and protects both the client,
by specifying how much should be done, and the supplier, by stating that the
supplier is not liable for failing to carry out tasks outside of the specified scope.
The DbC paradigm is as follow:

The client’s obligation is to call a method only in a program state
where both the class invariant and the method’s precondition hold. The
method, in return, guarantees that the work specified in the postcondi-
tion has been done, and the class invariant is still respected.

A precondition violation is a manifestation of an error in the client, while a
postcondition failure is a manifestation of a bug in the (implementation of the)
supplier, which does not fulfill its promise (Note: The phrase “An assertion fails”
in real life means just the opposite: the assertion did its job well, because it has
found a bug). For this reason, in order to call a method, the client should verify
only its preconditions. If the preconditions are satisfied, it should take for grant
the postcondition after the termination of the method execution. The supplier,
vice versa, should check the postconditions in order to guarantee its part of the
contract, but under no circumstances shall the body of the method ever test
for its preconditions. Under the Non Redundancy Principle [16], hence, the DbC
encourage the developer to “check less and get more”. DbC is, in this respect, the
opposite of defensive programming, which recommends to protect every software
module by as many checks as possible. This may result in redundancy and makes
it also difficult to precisely assign responsibilities among modules.

2.2 UML and OCL

In the last few years, much effort has been spent to make the UML language
more precise. Since its beginning, UML was conceived as a standard graphical
language suitable to support the development of object-oriented systems. A clear
intent in the UML design was the unification of the previous modeling languages,
which all provided different notations for the same concepts. The standardization
process was made by the Object Management Group (OMG), involving both the
industry and the academia worlds. The results of this process was a relatively
stable language, with an informal semantics. This level of definition was sufficient
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for sketching analysis and design models. However, when the model needed to be
elaborated by automated tools for validation and verification purposes, the lack
of a more formal foundation was immediately recognized. Because UML focused
primarily on the diagrammatic elements and gave meaning to those elements
through English text, a constraint language was added to the specification, in
order to provide a more precise definition of the UML meta-model. That language
was the Object Constraint Language (OCL) [19], initially developed in 1995 at
IBM. OCL allows the integration of both well-formedness rules and assertions
(i.e., preconditions, postconditions, invariants) in UML models. The former are
useful to validate especially the syntax of a UML model, whereas the latter can
be exploited to verify the conceptual constraints.

Preconditions and postconditions provide a mechanism to specify the prop-
erties required before and after the execution of an operation, respectively. They
do not specify how that operation internally works. The recent development of
version 2 for both OCL [20] and UML [21] is a breakthrough in order to com-
pletely define the semantics of a method in an object-oriented system. In these
last versions, it is possible to define a behavior specification in OCL for any
query operation (an operation without side-effects).

Following [22], now we summarize the relevant concepts about UML diagrams
and the OCL specification language. For the sake of simplicity, here we present
just a summary of the most important results.

In this work we use OCL as specification language to define software con-
tracts such as method preconditions and postconditions, class invariants, and
assertions in general. Hence we now define an object modelM that contains the
UML elements relevant for this task. Because preconditions, postconditions and
invariants are defined typically for class diagram elements (i.e., class attributes
and methods), we consider for the moment only the static structure of a UML
model. A (static) object model M can be represented by the following tuple:

M = 〈CLASS, ATT , OP ,ASSOC,�, associates, roles,multiplicities〉

where CLASS is a set of UML classes, ATT is a set of attributes, OP is a set
of operations, ASSOC is a set of associations, � is a generalization hierarchy
over classes, and associations, roles, and multiplicities are functions that give for
each as ∈ ASSOC its dedicated classes, classes’ role names, and multiplicities,
respectively (see [23] for complete definitions).

For an object model M providing a set of types TM, a relation ≤ on types
reflecting the type hierarchy, and a set of operations ΩM, the definition of OCL
expressions is based upon the signature:

ΣM = (TM,≤, ΩM)

According to [22], by using this signature we can define the OCL expressions
syntax in the following way. Let Var = {Vart}t∈TM

be a family of variable sets
where each variable set is indexed by a type t. An expression over the signature
ExprM is given by a set Expr = {Exprt}t∈TM and a function free : Expr →
F(Var) defined as follow.
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– If v ∈ Vart then v ∈ Exprt and free(v) := {v}.
– If v ∈ Vart1

, e1 ∈ Exprt1
, e2 ∈ Exprt2

then let v = 1 in 2 ∈ Exprt2
and

free(let v = e1 in e2) := free(v)− {v}.
– If ω : t1 x ... x tn → t ∈ ΩM and ei ∈ Exprti

for all i = 1, ...,n then
ω(1, ..., n) ∈ Exprt and free(ω(e1, ..., en)) := free(e1) ∪ ... ∪ free(en).

– If e1 ∈ ExprBoolean and e2, e3 ∈ Exprt then if 1 then 2 else 3 endif ∈
Exprt and free( if e1 then e2 else e3 endif) := free(e1)∪free(e2)∪free(e3).

– If e ∈ Exprt and t ′ ≤ t or t ≤ t ′ then ( asType ≈′) ∈ Exprt′ ,( isType ≈′) ∈
ExprBoolean , ( isKindOf ≈′) ∈ ExprBoolean and free((easTypet ′)) := free(e),
free((e isTypeOf t ′)) := free(e), free((e isKindOf t ′)) := free(e).

– If 1 → i≈ra≈(v1; v2 = 2 | 3) ∈ Exprt2
and free(e1 → iterate(v1; v2 =

e2 | e3)) := (free(e1) ∪ free(e2) ∪ free(e3))− {v1, v2}.

In order to properly address the subtyping relation, an expression of type t ′

is also an expression of a more general type t . Hence, for all t ′ ≤ t , if e ∈ Exprt′

then e ∈ Exprt .
Using the syntax defined above, we can start to write assertions in OCL,

embedding them in a UML model, as we will show in Example 1.

3 A Conceptual Framework for Static Verification of
Dynamic Diagrams Consistency

The expressive power of object-oriented paradigm makes it better suited for
development of large software systems than the traditional imperative paradigm.
However, the statically checks enforced by e.g. C++ or Java compilers test for
such syntactic and typing restrictions only that guarantee the lack of runtime
type errors. This is the contracting and specification level that has been used
for too many years in the past by most software developers. Obviously, this is
not enough to prevent surprising and often disastrous behavior of programs. In
other words, the checks done by compilers are only part of what is needed to
reason about the behavior (i.e., the semantics) of software.

Software contracts are a necessary prerequisite for being able to introduce
a notion of correctness: if you do not state what your program should do, you
are lacking the norm to which to compare what your program does in reality. In
defining class correctness we follow [16], p. 370:

Definition 1 ([16]). A class C is correct with respect to its specification if

– For any set of valid arguments e1, . . . , en to a creation procedure p:

{DefaultC ∧ Prep [x/e]} p {Postp [x/e] ∧ InvC}

– For every public method m and any set of valid arguments e1, . . . , en :

{Prem [x/e] ∧ InvC} m {Postm [x/e] ∧ InvC}
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Class X Class Y

(a) (Guarded) Method Call

Class C

(b) Self Method Call

Class X

(c) Create Object

Class C

(d) Object Life Line

Fig. 1. Sequence Diagrams Basic Building Blocks

where DefaultC denotes the assertion expressing that the attributes of C have
the default values of their type.

This notion clearly states what has to happen when we call a method in a state
which satisfies Prem [x/e] ∧ InvC, but what happens when this does not hold?
As already said, failure to meet any of the responsibilities stated in the contract
results in a break of the contract, and indicates the existence of a bug somewhere
in the design or implementation of the software or in the assertions themselves.
Due to the size of most systems, the latter chance is not so unlikely. In this
paper we want to focus on this situation, proposing our conceptual framework.
In particular we want to check dynamic diagrams (and in particular Sequence
Diagrams) against static diagrams and OCL specifications. In other words, the
idea is to consider Class Diagrams and OCL specifications as a kind of meta-
specification and all the dynamic diagrams as meta-code which has to conform
the specification.

Thus we aim to guarantee that, by following the control flow on the diagram,
the state is strong enough to satisfy the entry precondition of methods calls. For
the sake of simplicity, we further restrict our attention to Sequence Diagrams
which does neither involve concurrence nor timing constraints. This would re-
quire to define a much more complex verification method due to the complexity
of considering more than one control flow at a time. We believe that, even with
this restrictions, we have nevertheless a good level of generality to cover most of
the existing software systems.

We will define our verification method by structural induction on the (graph-
ical) syntax of Sequence Diagrams. Thus, in order to proceed, we need to specify
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Fig. 2. An Example of Sequence Diagram

in a formal way the graphical syntax of Sequence Diagrams; mainly formalize the
way to compose (connect) basic diagrams to obtain bigger ones. Since messages
(calls) involves at most two objects at a time, we consider graphical blocks that
refer to the lifetime of at most 2 objects at the same time.

Let us start, for the sake of simplicity, with the basic diagrams of Figure 1.
They have entry and exit points which are graphically connected to exits and
entries of other blocks. We introduce a function link that, given an entry point
of a block, returns the exit point of the block to which the former is connected,
and vice versa.

Most important than this, blocks can be nested. Inside the colored parts
of blocks of type 1(a) and 1(b) we can plug blocks of type 1(b) or the left
side of blocks of type 1(a) and 1(c). We can also plug any arbitrary sequential
composition of the latter. We can trivially extend function link to take this kind
of connections into account. The following example surely clarifies better than
many words.

Example 1 (Decomposition of Sequence Diagrams in Blocks).
The sequence diagram of Figure 2 is decomposed in blocks according to our

schema as in Figure 3. The whole diagram is composed of 2 blocks β1, β2 of
type 1(d) connected to a outer block β3 of type 1(a) which inside contains the
sequential composition of two other blocks β4, β5, both of them of type 1(a).
Thus function link in this case is defined as

link(B) = L link(N ) = B link(C ) = M
link(D) = O link(E ) = P link(G) = Q

while the blue boxes in the diagram indicate the block division. (Note: these
boxes are not part of the UML syntax.) 2

In UML Sequence Diagrams, especially version 2, there are also several di-
agrammatic elements which are naturally composed with inner blocks. This is
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Fig. 3. Decomposition of Sequence Diagrams in Building Blocks

the case of all fragments, for example those in 4(a)4(b), where we define a new
block by inserting blocks inside the “blank holes”.

We can handle Interaction Use Fragments simply by properly extending the
link function. We can handle Gates simply by glueing two corresponding dia-
grams along the corresponding connection points.

For economy of space, we do not explicitly show all other possible diagram-
matic elements as they can be treated analogously.

3.1 The Static Verification Method

We can now define our verification method by structural induction on the graph-
ical syntax of Sequence Diagrams. The idea we follow here is first to introduce
formula variables for all points of the blocks, then collect equalities between for-
mula variables of the linked points and then add all the implications that must
hold within the formula variables inside the various blocks according to their
semantics. The implications that do not hold show manifestly an inconsistency
of the sequence diagram.

Let now present the various possibilities. We assume now that methods are
called with actual arguments e1, . . . , en (denoted by e) and that its formal pa-
rameters are x1, . . . , xn (denoted by x ).

(Guarded) Method Call (1(a)) We need to impose that

ΦC = result(ΦA) ∧ Postm1 [x/e] ΦA = Φlink(A)

ΦD = ΦB ∧ Postm1 [x/e] ΦB = Φlink(B)
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Class X Class Y

(a) Alternative Fragment

Class X Class Y

(b) Loop Fragment

Fig. 4. Sequence Diagrams Fragments

and check that

ΦA ∧ guard ∧ ΦB =⇒ Prem1 [x/e] (1)
ΦD =⇒ InvY ΦC =⇒ InvX (2)

where result(ΦA) denotes the formula ΦA modified (if it is the case) by
inserting the result of method m1 in the container specified by the call in
class X .
Equation (1) prescribes that in order to call method m1 the states of caller
and callee, under the guard condition, have to be strong enough to guarantee
that the precondition of the method holds. Equations (2) prescribe that the
states reached by the caller and that by the callee do not invalidate the
corresponding class invariant.
The Unguarded Method Call is just a particular case with guard := True.

Self Method Call (1(b)) Analogously to the previous case, we need to impose
that

ΦB = result(ΦA) ∧ Postm [x/e] ΦA = Φlink(A)

and check that

ΦA ∧ guard =⇒ Prem [x/e] ΦB =⇒ InvC

Create Object (1(c)) We need to impose that

ΦB = ΦA ΦA = Φlink(A) ΦC = DefaultX

and check that ΦC =⇒ InvX.
Object Life Line (1(d)) We need to impose that ΦA = InvC.
Alternative Fragment (4(a)) We need to impose, for all 0 ≤ i ≤ k , that

ΦA = Φlink(A) ΦAi
= ΦA ∧ guardi

ΦB = Φlink(B) ΦBi
= ΦB ∧ guardi

ΦC =
∨

0≤i≤k

(guardi ∧ ΦCi ) ΦD =
∨

0≤i≤k

(guardi ∧ ΦDi ),
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and check that ΦD =⇒ InvY, ΦC =⇒ InvX, where

guard0 := ¬
∨

1≤i≤k

guardi

Note that the Alternative Method Call, as well as the Option and Break
Fragments, are just a special case of this one.

Loop (4(b)) The loop fragment can be handled with special care. If we would
have formulas within the body of loop which depend, even indirectly, upon
each loop iteration then we would need to use a universal quantifier. Thus,
to limit the expressive power of the underlying logic, we chose to treat just
loop bodies which do not depend on iterations. With this assumption, we
simply need to impose that

ΦA = Φlink(A) ΦE = ΦA ∧ guard ΦC = ΦG

ΦB = Φlink(B) ΦF = ΦB ∧ guard ΦD = ΦH

The Fragments which inherently require concurrency, like Parallel, Critical
Regions, Weak Sequential (when it does not boil down to Strict Sequentiality),
cannot be considered without a concurrent semantics and thus fall out of our
current scope.

Up to now we cannot consider too either the Assertion and Negative Frag-
ments, as they would require to use an universal quantification over diagrams.

3.2 The Verification Method at work

Now we provide a complete example in order to show how our method can be
applied in practice. We start to describe the static description of a software sys-
tem, building the class diagram shown in Figure 5. In this diagram, the Company
and Employee classes are defined. In particular, Employee has the following at-
tributes: age of type Integer, name of type String, and salary of type Double.
Similarly, the attributes of class Company are location and name (both of type
String). Employee has two methods: getAge, which takes no arguments and re-
turns an Integer value (the age), and raiseSalary which takes a Double and
return a Double (the raised salary). Company has two methods: fire and hire,
both of which takes an object of type Employee as argument. The method hire
returns a Double (the salary of the hired employee). If the employee to be hired
has an age greater than 30 years, the hire method call raiseSalary in order to
increase the current employee’s salary of 700 units. This scenario is depicted in
the sequence diagram shown in Figure 3. Then we add the following OCL soft-
ware contracts specifications for both Employee and Company classes. For the
class Employee:

context Employee
inv : ( s e l f . age >= 18)
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Fig. 5. Example Class Diagram

context Employee : : getAge ( ) : I n t e g e r
pre : t rue
post : ( r e s u l t = s e l f . age )

context Employee : : r a i s e S a l a r y ( amount : Double ) : Double
pre : t rue
post : ( s e l f . s a l a r y = ( s e l f . sa lary@pre + amount ) )
post : ( r e s u l t = s e l f . s a l a r y )

For the class Company:

context Company
inv : s e l f . employee−>s i z e ( ) == s e l f . employee−>asSet ()−> s i z e ( )

context Company : : h i r e (p : Employee )
pre h i rePre1 : p . i sDe f i n ed
pre h i rePre2 : s e l f . employee−>exc ludes (p)
post h i r ePos t : s e l f . employee−>i n c l ud e s (p)

context Company : : f i r e (p : Employee )
pre f i r eP r e : s e l f . employee−>i n c l ud e s (p)
post f i r eP o s t : s e l f . employee−>exc ludes (p)

Now we show what we obtain with our method on the sequence diagram of
Figure 3. The equalities on formula variables are:

ΦB = ΦN = ΦL = InvCompany =
(Company.employee −> size() ≡ Company.employee −> asSet() −> size())

ΦC = ΦM = (Andrea.age ≥ 40 ∧ salary ≡ 800)
ΦD = ΦO = (InvCompany ∧Result ≡ Andrea.age)
ΦE = ΦP = (Andrea.age ≥ 40 ∧ salary ≡ 800 ∧Result ≡ Andrea.age)
ΦQ = (InvCompany ∧Result ≡ 1500)
ΦH = (Andrea.age ≥ 40 ∧ salary ≡ 1500 ∧Andrea.salary ≡ 1500 ∧Result ≡ 1500)
ΦA = (Company.isDefined ∧Andrea.isDefined)
ΦF = (salary ≡ 1500 ∧Result ≡ 1500)
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ΦG = (InvCompany ∧ Company.employee −> includes(Andrea))

While the implications that we have to check are

InvCompany ∧Andrea.age ≥ 40 ∧ salary ≡ 800 =⇒ True

Andrea.age ≥ 40 ∧ salary ≡ 800 ∧Result ≡ Andrea.age =⇒ Andrea.age ≥ 18
InvCompany ∧Result ≡ Andrea.age =⇒ InvCompany

InvCompany ∧Andrea.age ≥ 30 ∧Andrea.age ≥ 40 ∧ salary ≡ 800 =⇒ True

InvCompany ∧Result ≡ 1500 =⇒ InvCompany

Andrea.age ≥ 40 ∧Andrea.salary ≡ 1500 =⇒ Andrea.age ≥ 18

Company.isDefined ∧Andrea.isDefined ∧ InvCompany =⇒
Andrea.isDefined ∧ Company.employee −> excludes(Andrea)

(i)

InvCompany ∧ Company.employee −> includes(Andrea) =⇒ InvCompany

All implications can be verified except of (i). Actually looking at (i) we discover
that there is nothing in the diagram which specifies that Andrea is not already
an hired employee. If we add in the diagram an initial constraint specifying that
Company.employee −> excludes(Andrea) then we can prove the new (i) and
then the diagram becomes consistent. This example suggests that in practical
situations the assertions to be added in order to reach consistency can be quite
easily derived by just inspecting the failing formula.

4 Applicability of the conceptual method

As already stated, the conceptual method that we have just presented is only a
first step in a much more ambitious direction. Clearly in its generality it cannot
be implemented because automatic proof of the verification formulas is undecid-
able. We think that even in this case the dimension of the state space generated
is so large that it cannot be explored explicitly by model-checking techniques
nor reasonably covered by testing.

However there are two possible nowadays well explored directions which we
can follow from now on. One is that of using some proof assistant, like Coq4.
The Coq tool is a formal proof management system: a proof done with Coq is
mechanically checked by the machine. This direction of research is quite fertile
in the literature. Several tools are being built on top of Coq, for object-oriented
software verification purposes. For example Krakatoa5 is a Java code certification
tool that uses Coq to verify the soundness of implementations with regards to
the specifications and Caduceus6 is a verification tool for C programs.

However even computer-aided formal proofs tend to be humanly demanding
and economically costly. An alternative is to use Abstract Interpretation Tech-
niques where an abstraction of the semantics of the programs is automatically
4 See http://coq.inria.fr/.
5 See http://krakatoa.lri.fr/.
6 See http://why.lri.fr/caduceus/.
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computed. This leaves out all information about reachable states which is not
strictly necessary for the proof. Of course if the abstraction is too precise, the
computation cost are too high (resource exhaustion) and if it is too rough, noth-
ing can be proved (false alarm). Although the best abstraction does exist, it is
not computable, and so, must be found experimentally.

There has been a lot of research on these topics with promising results. Indeed
recently we find tools based on Abstract Interpretation like Astree7 [9] that can
be used with great success for verification purposes of large C software systems.

5 Related Approaches and Future Works

In the literature we find also other completely different approaches to Model
Consistency Verification, like the one of [24] where the information specified
in class and Statechart Diagrams has been explicitly integrated into Sequence
Diagrams. With these enriched diagrams, designers can hopefully identify gaps
and contradictions in the specifications. In the future we would like to follow a
similar idea and extend our method in order to collect state formulas from the
Statechart Diagrams and inject them in the formula schema. This would autom-
atize the identification of this kind of inconsistencies, without even cluttering
the Sequence Diagrams.

The USE Tool [25] and the related works [26][27] represent another approach
to achieve similar goals. These works consider validation by generating snapshots
as prototypical instances of a model and comparing them against the specified
model. In this way, snapshots provide immediate feedback and can be visualized
using UML object diagrams. However the snapshots are defined by the user
using a snapshot specification language (for object creation and operation calls).
Eventually the sequence diagrams are automatically generated from the specified
snapshot. Conversely, we prefer to use the standard UML notation for describing
interactions, instead of a proprietary textual language, more suited to describe
constraints than pictures, without mention the fact that modeling the system
dynamics with diagrams is a standard practice in (object-oriented) software
development.

There are also many approaches based on the ideas of software contracts and
proof obligation generation. For example, the Java Modeling Language (JML)
[28] is a formal behavioral interface specification language for Java. As such it
allows one to specify both the syntactic interface of Java code and its intended
behavior. However the JML approach is tightly coupled with the implementation
programming language (in this case Java), whereas our framework is language
independent. Moreover, our semantic-based verification approach can be applied
even before the implementation starts. On the proof obligation side, the B for-
mal method [29] provides a formal notation based on set theory and supported
by automated tools, allowing specification, refinement, and proof. The B speci-
fication language come from Z and is not integrated neither in UML, nor in tool
7 See http://www.astree.ens.fr/.
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which support UML. There are works such as [30] which propose transformation
rules in order to map OCL constraints into B formal expressions, but they are
motivated by the lack of direct, automatic, static, and semantic-based verifica-
tion tools in the UML/OCL arena. The conceptual framework presented here is
a preliminary work toward the development of such tools.
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