
Towards Verified Model Transformations

Holger Giese1, Sabine Glesner2, Johannes Leitner3,
Wilhelm Schäfer1, and Robert Wagner1

1 Department of Computer Science
University of Paderborn, D-33098 Paderborn, Germany

[hg|wilhelm|wagner]@uni-paderborn.de
2 Faculty IV – Electrical Engineering and Computer Science

Technical University of Berlin, D-10587 Berlin, Germany
glesner@cs.tu-berlin.de

3 Department for Computer and Information Science
University of Konstanz, D-78457 Konstanz

leitner@inf.uni-konstanz.de

Abstract. Model-driven software development (MDD) is seen as a prom-
ising approach to improve software quality and reduce production costs
significantly. However, one of the problems in using MDD especially in
the area of safety-critical systems is the lack of verified transformations.
The verification of crucial safety properties on the model level is only
really useful, if the automatic code generation is also guaranteed to be
correct, i.e., the verified properties are guaranteed to hold also for the
generated code. This particularly means to check semantic equivalence,
at least to a certain extent between the model specification and the gen-
erated code. This paper addresses the problem of verifying that a given
transformation ensures semantic equivalence between an arbitrary model
in a given model specification language and the resulting programming
language code. While the presented approach ensures that the transfor-
mation algorithm is correct, existing related work is restricted on verify-
ing only the correctness of a particular transformation result.

1 Introduction

Model-driven software development (MDD) is seen as a promising approach
to improve software quality and reduce production costs significantly. A major
basis of such an approach is a usually domain-oriented modeling language which
enables to abstract from implementation specific details and thus makes models
(much) easier to develop and analyze than the final implementation. A significant
additional benefit in terms of improved quality and reduced costs could be gained
by the fully automatic transformation of a model-based system specification into
executable code, if at all possible.

In developing safety-critical systems this approach is getting increasing atten-
tion, as model analysis has advantages over pure testing of implemented systems.
Important required safety properties of a system under development could be
verified on the model level rather than trying to systematically test the absence

of failures. Prominent failures in the past illustrate that testing often fails to
detect malfunctioning by overlooking particular scenarios.

However, one of the problems in using MDD especially in the area of safety-
critical systems is the lack of verified transformations. The verification of crucial
safety properties on the model level is only really useful, if the automatic code
generation is also guaranteed to be correct, i.e., the verified properties are guar-
anteed to hold also for the generated code. This particularly means to check
semantic equivalence, at least to a certain extent between the model specifica-
tion and the generated code.

While testing model transformations [1] and in particular approaches which
exploit the specification of the code generator to derive critical test cases [2] are
a valuable aid to ensure the quality of the transformation, they can only check a
finite number of cases and thus fail to ensure the required semantic equivalence.

This paper addresses the problem of formally verifying that a given trans-
formation ensures semantic equivalence between any model of the given model
specification language and the resulting programming language code.

In compiler construction several approaches exist which check correctness of a
transformation algorithm in particular or the correctness of the implementation
when going from the code to lower level code or executables, see [3] for an
overview. As a detailed example, on the level of source code transformations, Java
and its transformation in Java byte code have been extensively investigated [4,
5]. The approach of proof-carrying code [6] is also weaker than what we intend
to provide, because it concentrates only on the verification of necessary but
not sufficient correctness criteria. The approach of program checking has been
proposed by the Verifix project [7] and has also become known as translation
validation [8, 9], recently also for loop transformations [10]. For an overview and
for results on program checking in optimizing backend transformations cf. [11].

In contrast to these approaches for compiler construction, model to code
transformations are characterized by rules and pattern matching like activation
schemes of these rules, and thus the techniques employed in compiler construc-
tion are not directly applicable for their formal verification.

Although there exist many approaches for the specification and execution
of model transformations, to the best of our knowledge, the only approaches
addressing the problem of semantic equivalence in the above sense, at least to
a limited extent, consider specific model instances and their translation results.
Either specific correctness conditions are checked for both the original model
and its transformation [12] or the semantic equivalence between both models is
guaranteed by a bisimulation check [13].

Our approach realized in the Fujaba Tool Suite4 is based on a formal
specification technique, namely triple graph grammars (TGG) to specify a model
to code transformation. The correctness of this specification and consequently
the code generator is shown using the theorem prover Isabelle/HOL.

The next section will illustrate the use of a domain-oriented modelling lan-
guage based on the example of a production line and its fairly complex control

4 www.fujaba.de

software. This realistic example of an existing industrial system will also be used
to present the TGG and their application in building model to code transforma-
tions in Section 3. Section 4 describes the use of Isabelle/HOL to verify the
transformation. Section 5 gives an account of the status of our work by listing
required next steps and remaining open questions. Finally, Section 6 summarizes
the work.

2 Modeling Approach

In this section, we provide a brief overview of the employed modeling approach
[14] using a simple case study from the area of flexible production systems.
It exemplifies the need for dependable model transformations and serves as a
running example for explaining the specification of model transformations and
their verification.

The substantial components of this modular system are working stations,
straight and curved monorail tracks, as well as transfer gates (switches). For
the transportation of materials and goods between the working stations self-
propelled transportation units (shuttles) moving along the tracks are employed.
The transportation units circulate on the main loop of the material flow system
and can be stopped at stations or before curves and transfer gates only.

The decentralized production control system consists of PCs on the supervi-
sory control level and Programmable Logic Controllers (PLC) on the cell level.
The components’ actuators and sensors are connected to the PLC via an Ac-
tuator Sensor Interface (ASI). The communication among PCs and PLCs is
implemented by a multi-point interface (MPI, Siemens AG). Higher-level tasks,
e.g., planning, order assignment, and coordination of local activities of all con-
trollers are done at the supervisory control level. The PLCs on the cell level are
responsible for the control of local components such as stations or transfer gates.

For the specification of the control software, we combined subsets of the Spec-
ification and Description Language (SDL) [15] and the Unified Modeling Lan-
guage (UML) [16] into an executable graphical language [17]. In this language, a
block diagram is used to specify the overall static communication structure where
processes and blocks are connected to each other by channels and signal routes.
For implementation purposes, the block diagram is automatically transformed
to an initial class diagram. This class diagram can be refined and extended to an
executable specification. For example, we can assign an automaton to model the
reactive behavior of the control software. Fig. 1(a) presents a simple automaton
for the control of the transfer gate used in our case study.

The specified automaton switches the transfer gate between the straight and
the round direction. Initially, the transfer gate is switched to the straight direc-
tion and fixed by a mechanical interlock. When the condition switch2round=true
becomes true, the interlock is disengaged by the action interlock:=false, and state
straight unlocked is entered. Thereafter, the triggerless transition fires and the
appropriate action round cylinder:=true is executed. This action activates the
pneumatic cylinder responsible for turning the transfer gate into the round di-

(a) Transfer gate automaton

6

END CASE ;

VAR
s t a t e : INT := 1 ; /∗ s e t to ’ s t r a i g h t ’ ∗/

END VAR ;

CASE s t a t e OF

1 : /∗ c u r r e n t s t a t e i s ’ s t r a i g h t ’ ∗/
IF sw i t ch2 round=t r u e THEN

i n t e r l o c k := f a l s e ;
s t a t e := 2 ; /∗ s e t to ’ s t r a i g h t un locked ’ ∗/

END IF ;

2 : /∗ c u r r e n t s t a t e i s ’ s t r a i g h t un locked ’ ∗/
r o u n d c y l i n d e r := t r u e ;
s t a t e :=3; /∗ s e t to ’ sw i t c h i n g round ’ ∗/

. . .

END CASE ;

First, each state of the automaton is assigned a unique integer value. Then,
we declare an integer variable state to keep the current state of the automaton
which is handled in a case-statement. For our example automaton, the current
state variable state is set to the initial state straight represented by the assigned
integer value.

The outgoing transitions are encoded as if-statements with the transition
guard as condition. For triggerless transitions, the if-statement is omitted if
it is the one and only outgoing transition from that state. If they are more
outgoing transitions with a guard, the triggerless transition is embedded in a
if-else statement. Multiple triggerless transitions from one state are forbidden.
The actions are realized as simple variable assignments. These variables, together
with the variables from the conditions, are mapped by the compiler to the real
addresses of the hardware. Note that the presented program is executed once in
each cycle of the PLC. Thus, it is the body of an implicit loop-forever statement.

4 Model Transformations

To realize the modeling approach outlined in the previous section, we need a
transformation which translates the given automaton to executable PLC-code.
Since code can be also viewed as a more detailed model of the software, we em-
ploy for this translation a model transformation technique based on triple graph
grammars [16]. In this section, we give an overview of our model transforma-
tion approach and introduce the basics of the employed model transformation
technique using our example from the previous section.

(b) Generated PLC-code

Fig. 1. Automaton and generated PLC-code controlling a transfer gate

rection. The state switching round is left if the proximity sensor announces that
the switching process completed. If the switching process was successful, the
state round is entered and the interlock re-engaged. Now, the transfer gate can
be switched back to the straight direction which is performed analogous to the
described switching process for the round direction.

For the specification of the entire system, further controller automata are
needed, e.g., automata to control the stopping and starting of shuttles at sta-
tions or before transfer gates. The sheer number of these automata and their
interaction makes it hard to check manually whether the system functionality is
defined correctly. As an example consider a requirement like ”a shuttle never en-
ters a transfer gate if the transfer gate is currently switching its direction”. Our
approach enables automated verification of such kind of safety-critical require-
ments using model checking [18]. After a successful verification, the controller
automata need to be implemented. In our approach, the defined precise seman-
tics of the automata model allows us to generate the PLC-code automatically.

PLCs are microprocessor systems that are widely used in industrial automa-
tion. The reason for their popularity is that they are robust and reliable. A
PLC is connected to sensors and actuators: the former provide information on
the state of the controlled component while the latter perform the actions pre-
scribed by the control software. PLCs behave in a cyclic manner where each
cycle follows three phases: (1) poll all inputs and store read values, (2) compute
new output values, and (3) update all outputs. The repeated execution of this
cycle is managed by the built-in real-time operating system. Thus, the control
software has to compute the output values based on the read input values only.

For the automatic generation of PLC-code out of an object-oriented specifi-
cation, we adapted our code generation mechanisms to produce Structured Text
(ST). Structured Text is a notation similar to PASCAL. It provides constructs
such as if-then-else-conditionals and while-loops. As typical object-oriented con-
cepts like inheritance or polymorphism are not supported, we implement the
behavior of an automaton by simple switch-case constructs. The piece of code

in Fig. 1(b) is an excerpt of the generated PLC-code for the automaton shown
in Fig. 1(a) and gives a short impression on the translation in Structured Text
for the states straight and straight unlock.

First, each state of the automaton is assigned a unique integer value. Then,
we declare an integer variable state to keep the current state of the automaton
which is handled in a case-statement. For our example automaton, the current
state variable state is set to the initial state straight represented by the assigned
integer value.

The outgoing transitions are encoded as if-statements with the transition
guard as condition. For triggerless transitions, the if-statement is omitted if
it is the one and only outgoing transition from that state. If they are more
outgoing transitions with a guard, the triggerless transition is embedded in a
if-else statement. Multiple triggerless transitions from one state are forbidden.
The actions are realized as simple variable assignments. These variables, together
with the variables from the conditions, are mapped by the compiler to the real
addresses of the hardware. Note that the presented program is executed once in
each cycle of the PLC. Thus, it is the body of an implicit loop-forever statement.

3 Model Transformations

To realize the modeling approach outlined in the previous section, we need a
transformation which translates the given automata into executable PLC-code.
Since code can be also viewed as a more detailed model of the software, we em-
ploy for this translation a model transformation technique based on triple graph
grammars [19]. In this section, we give an overview of our model transforma-
tion approach and introduce the basics of the employed model transformation
technique using our example from the previous section.

Fig. 2 gives an overview of our model transformation approach. The model
transformation is specified by a number of transformation rules. The transfor-
mation rules are specified w.r.t. the metamodels of the source, the target, and an
additional correspondence metamodel. From these rule specifications, a trans-
formation engine is generated. The automatically derived engine transforms a
source model into a target model yielding an additional correspondence model.
This correspondence model enables a clear distinction between the source and
the target model and holds additional traceability information about the ap-
plied mappings between the involved model elements. This information is used
for further incremental updates if one of the models changes [20]. Hence, after
an initial transformation the correspondence model serves as an additional input
for following update transformations. In addition, since the employed transfor-
mation technique is bidirectional in nature, the source and target models can
change their roles and a reverse transformation, i.e., form the target to the source
model, will be also possible. However, to keep things simple, in this paper we
consider only transformations in the forward direction, i.e., from the source to
the target model.

Correspondence

Metamodel

Target

Metamodel

Source

Model

Target

Model

Transformation

Engine

Correspondence

Model

Source

Metamodel

Transformation

Rules

<<uses>>

<<uses>> <<uses>>

<<instance of>> <<instance of>>

<<instance of>>

<<input>> <<output>>

<<output>>

Transformation

Engine

Generation

<<links to>> <<links to>>

Fig. 2. Overview of the model transformation approach

In order to explain the specification technique of triple graph grammars for
model transformation, we have to take a closer look at the involved metamodels.
A metamodel defines the abstract syntax and static semantics of a modeling
language. In Fig. 3, the automata metamodel, the metamodel defining the ab-
stract syntax tree of the Structured Text programming language for PLCs, and
the correspondence metamodel are shown.

In the automata metamodel shown in the upper left of Fig. 3, an Automaton
consists of States and Transitions. A Transition connects States by its outgoing
and incoming associations and has a Trigger as well as an ordered sequence
of Actions. Some special states are the classes InitialState and FinalState. An
automaton can have only one InitialState referenced by the directed association
initialState but many FinalStates though they are rarly used for the specification
of reactive systems.

For the specification of a triple graph grammar, we need an additional corre-
spondence metamodel. It is shown in the upper right of Fig. 3. The metamodel
defines the mapping between a source and a target metamodel by the classes
TGGNode and Object and its associations sources and targets. Since all classes
inherit implicitly from the Object class (not shown here), the correspondence
model stores the traceability information needed to preserve the consistency be-
tween two models. In addition, the class TGGNode has a self-association succ
which connects the correspondence nodes with their successor correspondence
nodes. This extra link is used by our transformation algorithm.

The two described classes and their associations are essential for our trans-
formation algorithm. However, further correspondence classes and refined asso-
ciations can be added. In our example, we have added two additional correspon-
dence classes, including the correspondence class CorrNode used in our example
rule (cf. Fig. 4). The additional correspondence classes increase the performance
of our transformation algorithm but have no impact on the carried out formal
verification.

The abstract syntax tree for Structured Text is defined by the metamodel
shown in the lower part of Fig. 3. In fact, we are using only a subset of the

Fig. 3. Metamodels of the source, correspondence, and target model

language that is needed for the code generated out of automata. This subset was
extracted from the Structured Text grammar definition and comprises basically
case-switch statements, if-then-else statements, assignment statements as well
as expressions.

A program is represented by the class PLC that consists of one StaticVari-
ableBlock and a CaseBlock. The class StaticVariableBlock has a to-many compo-

sition association to the class VarDecl which represents a variable declaration. A
variable declaration comprises a Type, an Identifier, and an InitVal class repre-
senting the initial value of the identifier. The CaseBlock relates to an Identifier
and is associated to many Cases that are represented by a Label. Each Case com-
prises a sequence of ordered Statements. A Statement is either a FunctionCall
with a FunctionParameter whose result is assigned to an Identifier, an Assign-
ment with a left-hand side Identifier and a right-hand side Expression, or an IF
condition block. The Expression is defined by two Operands and an Operator.
Up to now, only two kinds of operators are supported: equality and inequality.
The Operands can be also represented by an Identifier or a Constant. An IF
condition consists of an IfPart and an optional ElseIfPart which both have an
Expression and embody an ordered sequence of Statements.

Given these three metamodels, a triple graph grammar for our example model
transformation can be specified. In the following, we will explain the basic con-
cepts with the help of our example and refer to [19] for a formal definition.

Fig. 4. A triple graph grammar rule mapping states to case statements

A triple graph grammar specification is a declarative definition of a bidi-
rectional model transformation. In Fig. 4, a triple graph grammar rule in the
Fujaba-notation is depicted. The rule specifies a consistent correspondence
mapping between the objects of the source and the target model. In particu-
lar, the presented rule defines a mapping between a state and a corresponding
case statement. The objects of the automaton are drawn on the left and the

objects of the programming language are drawn on the right. They are marked
with the �left� and �right� stereotypes respectively. The correspondence
objects in the middle of the rule are tagged with the �map� stereotype.

The rule is separated into a triple of productions (source production, cor-
respondence production, and target production), where each production is re-
garded as a context-sensitive graph grammar rule. A graph grammar rule consists
of a left-hand side and a right-hand side. All objects which are not marked with
the �create� stereotype belong to the left-hand side and to the right-hand
side; the objects which are tagged with the �create� stereotype occur on the
right-hand side only. In fact, these tags make up a production in Fujaba’s graph
grammar notation.

The source production on the left shows the generation of a new state and
linking it to an automaton. The target production on the right shows the addition
of a new case statement and its linking to the case block. In addition, the case
block is equipped with a label to identify the state in the program. Since states
in the program are encoded as integer values, a mapping function is used to
translate the name of the state to a unique integer value. The correspondence
production in the middle shows the relations between a state and the objects
representing the case statement.

A graph grammar rule is applied by substituting the left-hand side with the
right-hand side if the pattern of the left-hand side can be matched to a graph, i.e.,
if the left-hand side is matched all objects tagged with the�create� stereotype
will be created. Hence, our example rule, in combination with additional rules
covering other elements, can generate an automaton with the corresponding
representation in the programming language by applying the production triples
simultaneously. However, the transformation will not be executed this way. To
execute a transformation, conceptually, we can assume that whenever a state is
added to the automaton, a case statement with a corresponding label will be
generated in the program. This way, the triple graph grammar rules define a
transformation between automata and their representation in the programming
language Structured Text.

The briefly described model transformation approach was realized in the
Fujaba Tool Suite. For the visual specification of a triple graph grammar
rule we use the TGGEditor (cf. Fig. 4) which is realized as a plug-in. This
editor ensures conformance to the source, the correspondence, and the target
metamodels. For this purpose, the required metamodels have to be specified in
Fujaba as class diagrams (cf. Fig. 3).

The execution of a model transformation is done by the MoTE plug-in.
MoTE is the abbreviation for Model Transformation Engine. It is the core li-
brary for the execution of triple graph grammars and can be also used without
Fujaba. In order to execute a model transformation, we generate from each
triple graph grammar rule Java code using Fujaba’s code generation facilities.
This code is compiled to executable transformation rules which are bundled into
a single Jar archive file. The archive represents the catalog of transformation
rules defining the model transformation specified by a triple graph grammar.

Once the catalog is available, the transformation engine is complete and model
transformations can be carried out.

As mentioned in Section 2, our approach verifies the specified automata
w.r.t. crucial safety requirements. However, the proven properties can only be
guaranteed to hold also for the implementation, if we can ensure that the im-
plementation realizes the same behavior as the specified automata. Therefore,
we have to ensure that the employed model transformation from the automa-
ton model to the code model is correct (the implementation model must be
semantically equivalent to the already verified automata model).

4 Verification

In this section, we describe our approach for the verification of triple graph
grammar transformations in Isabelle/HOL. We show in more detail how to
derive Isabelle/HOL representations from structures in Fujaba and outline
the basic proof scheme.

In essence, we prove that the relation of semantic equivalence is a congruence
with respect to an appropriate representation of the transformation rules. Fig. 5
extends the modeling overview from Fig. 2 with an illustration of our general
proof scheme.

Fig. 5. Overview of the verified model transformation approach

Note that the model instances (as well as the transformation engine) shown
in Fig. 2 are omitted here. Since we verify the correctness of transformation rules
applied to any model of the specified type, these instances are irrelevant for the
proof.

Model transformations are often formalized as instances of graph transforma-
tions. While this approach is intuitive and shifts the problem into an extensive
and well-known theory, its realization in Isabelle/HOL poses a number of dif-
ficulties. Problems already arise when trying to formalize models as instances of

metamodels in HOL. A metamodel entails a number of structural constraints on
its instances, while a graph just consists of arbitrarily connected nodes. Meta-
model constraints have to be expressed as additional axioms about the structure
of the graph, like “Nodes with a type of State can only be directly connected to
nodes of type Transition”. Even small metamodels will result in graph types
encompassed by long lists of such axioms. Defining semantics and conducting
proofs on these structures is tedious and, more importantly, the derivation of
axioms from metamodels is not straight-forward, has to be done manually and
is thus error-prone.

For these reasons, we chose a different formalization of metamodels that
comprises all the structural information directly in a type definition. This makes
proofs simpler and significantly more compact. At first, we create a modified
version of the metamodel with an ordered, tree-like structure. This structure
can always be achieved by, for example, converting circular compositions to
reference attributes. Fig. 6 shows the result for a part of the metamodel of the
employed automata presented in Fig. 3.

Fig. 6. Part of the modified metamodel for automata

This kind of “flattened” model can be mapped to a type in Isabelle/HOL
using only constructs like records, lists and other primitive data types. The
nature of this mapping is straight-forward and might be implemented as an
automatic procedure in the future. The result for the above metamodel is:

r e c o r d S ta t e =
I d e n t i t y : : BaseType
Outgoing : : Ou tgo i ngT ran s i t i o n l i s t
F i n a l S t a t e : : boo l

r e c o r d Ou tgo i ngT r an s i t i o n =
Target : : BaseType
Ac t i on s : : Act ionType l i s t
T r i g g e r : : Tr igge rType op t i on

Primitive (i.e. algebraic) types are a core concept of Isabelle/HOL. On
these types, we can easily define an operational semantics as a recursive func-
tion over the structure of the model. On this semantics, we define a bisimula-
tion ≈, formalizing the notion of semantic equivalence. In many cases, semantic
equivalence is just defined as (statewise) equality; however, different semantic
domains of source and target model might require a more abstract comparison.
Our definition of semantics and semantic equivalence is shown in detail in [21,
22].

We view rules of a triple graph grammar not as specifications of transfor-
mations on a single graph, but as pairs of productions describing a way that
two models are simultaneously modified. This allows for an easy and elegant
formalization in Isabelle/HOL. Fig. 7 shows the pair of graph productions
corresponding to the triple graph grammar rule that maps states to case state-
ments (shown in Fig. 4).

Fig. 7. View of the triple graph grammar rule in Fig. 4 as a pair of productions

This interpretation captures the bidirectional nature of TGGs by interpreting
them as a grammar for the parallel evolution of source and target model. For each
of these productions we can now define an operator, called modifier, on source
and target model. We formalize the application of a transformation rule as a
parallel application of the corresponding modifiers to both models. For example,
for the productions above, we define modifiers for automata and PLC programs
that add a state or a case statement, respectively:5

A⊕ s ≡ AL States := (States A) · s M
P ⊕ c ≡ P L MainProgram := c · (MainProgram P) M

For the correctness of each transformation rule it then suffices to show that
the application of the modifiers will not destroy semantical equivalence of models.
For example, if we add a state to an automaton and a corresponding case block
to a semantically equivalent PLC program in the Structured Text programming
language, automaton and program remain equivalent:

A ≈ P =⇒ (A⊕ s) ≈ (P ⊕ State2Case(s)) (1)

In effect, we show that semantical equivalence is a congruence with respect
to every transformation rule. The proof for the above lemma is straight-forward,
since neither the new state nor the new code segment will be reachable. How-
ever, more complex rules require more elaborate proofs. For example, the proof
for one variant of the TGG rule Action2Code that adds actions to transitions
(and inserts PLC code in the appropriate location in the program) requires over
100 lines of proof code6 in ISAR notation [23] and makes use of 15 additional
helper lemmas. In total, the proof of the correctness of the transformation from
automata to a PLC language contains approximately 1500 lines of proof code.
Table 1 shows the distribution of lines of proof code for the different parts of the
proof.
5 Here, the Isabelle/HOL operator L... := ...M is used to update the specified member

of a record. The operator · appends elements to lists.
6 Note that proofs in Isabelle/HOL cannot be done automatically and that the vast

majority of proof steps needs manual interaction.

Table 1. Lines of Isar proof code for different parts of the proof

Mapping

Automata formalization 170

SCL formalization 259

TGG rule formalization 302

Rule Correctness Proofs

Definition of semantic equivalence 42

The Axiom rule 22

The State2Case rule 81

Two variants of Transition2Code 328

Two variants of Action2Code 276

5 Next Steps

To realize the vision of MDD by means of verified model transformations, the
presented results are a first step. We discuss in this section required next steps
we plan to address.

Rule correctness lemmas of the simple form as presented in Section 4 will
not always be provable. TGG rules are not applicable on arbitrary patterns in
the source and target graph, but rely on the correspondence graph created by
previous rules. For example, adding a transition to a state of an automaton and a
corresponding code segment to a case-block of a PLC program will only preserve
semantic equivalence if the state and the case-block themselves correspond to
each other, i.e., were created by a pair of modifiers. In fact, in the example
lemma (1) the correspondence is hidden in the Function State2Case, which
creates a case block with the same identifier as the state s. This results in
additional preconditions, which we call correspondence preconditions, for the rule
correctness lemmas. At the moment, we tackle this problem by introducing the
correspondence preconditions manually. We aim to show that these preconditions
indeed result from previous rule applications. A possible solution makes use of
the set of all models introduced by successive application of all the rules in a
TGG grammar, which would enable us to conduct proofs about the relationships
between rule applications.

In addition to a proof technique, also the methodological aspects of verifying
model transformation have to be addressed. We therefore plan to elaborate the
design and verification process for model transformations and develop automated
or semi-automated tool support for the required activities where possible.

A first planned extension is to automatically derive the formalization of the
metamodels and TGG rules in Isabelle/HOL which accounts for nearly 50%
of the lines of proof code. We also want to explore how we can combine the
interactive theorem proving with available automated verification approaches
for finite and infinite graph transformations already present in Fujaba [24] in
order to reduce the effort for the verification of a model transformation.

6 Conclusions

Model-driven software development, especially with domain-specific languages,
is increasingly important to automatically develop software that adheres to its
specification. In this paper, we have shown how model-driven software develop-
ment is applied in the context of flexible production systems. These systems and
their transformations are specified within the Fujaba Tool Suite using triple
graph grammars (TGGs). TGGs are a special form of graph grammars that
allow us to specify the parallel evolution of systems, namely of the source (or
model) system and the target system (its implementation). We have presented
results of ongoing work how such transformations can be formalized and verified
in the Isabelle/HOL theorem prover. This is an important step towards fully
verified model transformations, which are necessary to guarantee correctness of
the generated implementations of the specified models.

References

1. Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engineering: Testing
model transformations. In: Proc. of the First International Workshop on Model,
Design and Validation, Rennes, November 2004. (2004) 29–40

2. Stuermer, I.: A contribution of graph grammar techniques to the specification, ver-
ification and certification of code generation tools. Electronic Notes in Theoretical
Computer Science 72 (2002) 10

3. Glesner, S., Goos, G., Zimmermann, W.: Verifix: Konstruktion und Architek-
tur verifizierender Übersetzer (Verifix: Construction and Architecture of Verifying
Compilers). it - Information Technology 46 (2004) 265–276 Print ISSN: 1611-2776.

4. Klein, G., Nipkow, T.: Verified Bytecode Verifiers. Theoretical Computer Science
298 (2003) 583–626

5. Klein, G., Strecker, M.: Verified Bytecode Verification and Type-Certifying Com-
pilation. The Journal of Logic and Algebraic Programming 58 (2004) 27–60

6. Necula, G.C.: Proof-Carrying Code. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’97), Paris,
France (1997) 106–119

7. Goerigk, W., Dold, A., Gaul, T., Goos, G., Heberle, A., von Henke, F., Hoffmann,
U., Langmaack, H., Pfeifer, H., Ruess, H., Zimmermann, W.: Compiler Correctness
and Implementation Verification: The Verifix Approach. In Fritzson, P., ed.: Poster
Session of CC’96, IDA Technical Report LiTH-IDA-R-96-12, Linkoeping, Sweden
(1996)

8. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In Steffen, B., ed.:
Proceedings of Tools and Algorithms for the Construction and Analysis of Systems,
Lisbon, Portugal, Springer Verlag, LNCS 1384 (1998) 151–166

9. Necula, G.C.: Translation Validation for an Optimizing Compiler. In: Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’00), Vancouver, British Columbia, Canada (2000) 83–94

10. Goldberg, B., Zuck, L., Barrett, C.: Into the Loops: Practical Issues in Translation
Validation for Optimizing Compilers. In: Proceedings of the Workshop Compiler
Optimization meets Compiler Verification (COCV 2004), 7th European Confer-
ences on Theory and Practice of Software (ETAPS 2004), Barcelona, Spain, Else-
vier, Electronic Notes in Theoretical Computer Science (ENTCS) (2004)

11. Glesner, S.: Using Program Checking to Ensure the Correctness of Compiler Im-
plementations. Journal of Universal Computer Science (J.UCS) 9 (2003) 191–222

12. Varró, D., Pataricza, A.: Automated formal verification of model transformations.
In Jürjens, J., Rumpe, B., France, R., Fernandez, E.B., eds.: CSDUML 2003: Criti-
cal Systems Development in UML; Proceedings of the UML’03 Workshop. Number
TUM-I0323 in Technical Report, Technische Universität München (2003) 63–78

13. Narayanan, A., Karsai, G.: Towards verifying model transformations. In: 5th In-
ternational Workshop on Graph Transformations and Visual Modeling Techniques,
Vienna, 2006. Electronic Notes in Theoretical Computer Sience (2006) 185–194

14. Schäfer, W., Wagner, R., Gausemeier, J., Eckes, R.: An engineer’s workstation to
support integrated development of flexible production control systems. In Ehrig,
H., Damm, W., Desel, J., Gros̈e-Rhode, M., Reif, W., Schnieder, E., Westkämper,
E., eds.: Integration of Software Specification Techniques for Applications in En-
gineering. LNCS 3147. Springer Verlag (2004) 48–68

15. International Telecommunication Union (ITU), Geneva: ITU-T Recommendation
Z.100: Specification and Description Language (SDL). (1994 + Addendum 1996)

16. OMG 250 First Avenue, Needham, MA 02494, USA: Unified Modeling Language
Specification Version 1.5. (2005)

17. Nickel, U., Schäfer, W., Zündorf, A.: Integrative specification of distributed pro-
duction control systems for flexible automated manufacturing. In Nagl, M., West-
fechtel, B., eds.: DFG Workshop: Modelle, Werkzeuge und Infrastrukturen zur Un-
terstützung von Entwicklungsprozessen, Wiley-VCH Verlag GmbH and Co. KGaA
(2003) 179–195

18. Giese, H., Kardos, M., Nickel, U.: Integrating Verification in a Design Process
for Distributed Production Control Systems. In: Proceedings of the 2nd Inter-
national Workshop on Integration of Specification Techniques for Applications in
Engineering (INT2002), Grenoble, France. (2002)

19. Schürr, A.: Specification of graph translators with triple graph grammars. In Mayr,
E.W., Schmidt, G., Tinhofer, G., eds.: Graph-Theoretic Concepts in Computer
Science, 20th International Workshop, WG ’94. Volume 903 of LNCS., Herrsching,
Germany (1994) 151–163

20. Giese, H., Wagner, R.: Incremental model synchronization with triple graph gram-
mars. In Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.: Proc. of the 9th
International Conference on Model Driven Engineering Languages and Systems
(MoDELS), Genoa, Italy. LNCS, Springer Verlag (2006).

21. Leitner, J.: Verifikation von Modelltransformationen basierend auf Triple Graph
Grammatiken. Master’s Thesis (Diplomarbeit), University of Karlsruhe (2006)

22. Blech, J.O., Glesner, S., Leitner, J.: Formal Verification of Java Code Generation
from UML Models. In: Proceedings of the 3rd International Fujaba Days 2005:
MDD in Practice, Technical Report, University of Paderborn (2005)

23. Nipkow, T.: Structured Proofs in Isar/HOL. In: Types for Proofs and Programs
(TYPES 2002), Springer Verlag, LNCS 2646 (2003) 259–278

24. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic Invariant Ver-
ification for Systems with Dynamic Structural Adaptation. In: Proc. of the 28th

International Conference on Software Engineering (ICSE), Shanghai, China, ACM
Press (2006)

