
Using B to verify UML Transformations

K. Lano

Dept. of Computer Science, King’s College London, Strand, London, WC2R 2LS, UK

Abstract. This paper describes the use of the B formal method to verify
semantic properties of UML graphical models, and the correctness of
transformations on these models.

1 Introduction

UML is a large and complex notation, in which many aspects of the semantics
remain incomplete or are only expressed in an operational manner, ill-suited for
analysis using proof tools. Specific problems include:

1. Complex use of undefined and null values within OCL, and missing/inexpressible
axioms of OCL. For example the s→at(i) operation does not have a formal
semantics in UML 2.0 [22].

2. Lack of semantic consistency properties for individual models and between
models of the same system [13]. For example, it is necessary that the state
invariants of a state machine defining the classifier behaviour of a particular
class should be consistent with the invariants of that class.

3. Lack of grounded interpretation for UML concepts, independent of UML
[21].

Many of these problems are due to the lack of an objective semantics [8] for UML,
and the desire by the UML community to leave certain semantic aspects open,
to support a wider use of the notation across different domains. At the same
time, an objective semantics is essential to support reuse (if we don’t know what
a diagram means, how can we reuse it and its corresponding developed code?)
and to support verification (the diagrams should have a mathematical seman-
tics because they are abstract descriptions of mathematically precise artifacts –
programs).

We solve some of these problems by defining a subset, UML-RSDS (Reactive
system development support), of UML, which has a precise semantics based on
ZF set theory and classical predicate calculus, which is also the foundation for the
Z [25] and B [1] specification languages. This semantics is entirely independent of
UML. B provides a notation in which the semantics of models can be expressed
and used for verification and validation of the models. B provides an integration
of class diagram and state machine models in single components (B machines).

Figure 1 shows the overall development process supported by UML-RSDS
and its accompanying toolset. A developer can construct PIM or PSM class
diagrams and state machines using the tool, transform models to improve their

UML−RSDS
Specifications
PIM level

UML−RSDS
Specifications
PSM level

Refinement
transformations Quality improvement

transformations B Specification

B Synthesis

SMV
 Synthesis

SMV
Specification

Java
Code

Synthesis of Java
Testing

Automated step
Semi−automated step
Manual step

Model checking

Consistency, Completeness
checking

Proof, animation

Fig. 1. UML-RSDS Development Steps

quality or refine them, translate to B [1] or SMV [12] for semantic analysis, and
generate Java code from a Java PSM.

The translation from UML to B closely corresponds to the semantics of UML-
RSDS defined in [19]: both the mathematical elements used to interpret classes,
associations, etc, and the structuring/interrelationships of machines parallels
the formalisation of models as theories, and the relations of inclusion/extension
between these theories. However there are some differences, such as the absence
of real numbers in B, and the absence of internal concurrency in B.

2 Specification in UML-RSDS

UML-RSDS specifications consist of:

1. A UML class diagram, including constraints attached to operations, classes
and (sets of) associations;

2. A use-case diagram, defining the operations of the system;
3. State machine models attached to classes or operations in the class diagram,

or to use cases.

Class attributes can be stereotyped as input , internal , derived or output : Derived
attributes are prefixed by / as usual. The prefix ? indicates an input attribute
and ! an output. These stereotypes are applicable for many different kinds of
system, for example, an input field on a web page, or a sensor in a process
control system, could both be represented as input attributes.

2.1 Specification Example

An example of a UML-RSDS specification, of part of a robot control system
from the production cell case study [20], is shown in Figure 2.

FeedBelt ERTable
? fbsw: State
? fbend: State
! fbm: State

* 1 ? ertblank: State
? ertts: State
? ertbs: State

! ertvm: VertMovement
! ertrm: RotMovement

C1, C2

C3, C4

belts

ProductionCell

ok: BooleanState <<enumeration>>
Off
On

*

1

11

RotMovement <<enumeration>>
Off
Clockwise
Anticlockwise

Off
Up
Down

VertMovement <<enumeration>>

Fig. 2. Class Diagram of Production Cell System

The FeedBelt class represents feed belts, which move work pieces (such as
car bodies) into the robot production cell. These have a motor fbm to move the
belt, a switch fbsw to switch the belt on and off, and a sensor fbend to detect
if a piece has reached the end of the belt, ready for unloading into the next
component of the cell.

One such component is an ‘elevating rotating table’, represented by the
ERTable class. These tables have two motors ertvm for vertical movement and
ertrm for rotary movement, and two sensors ertts and ertbs to detect if the table
is at its top or bottom position, respectively. The sensor ertblank detects if there
is a work piece in the table.

Normally one or more feed belts may feed blanks into a given table. belts
gives, for each table, the set of belts that feed that table.

Some example constraints in this system are:

– C1 “If the belt switch is off, the motor is off”:

fbsw = Off ⇒ fbm = Off

– C2 “If there is no blank at the end, the belt keeps moving”:

fbsw = On & fbend = Off ⇒ fbm = On

These are local invariants of the FeedBelt class.
A constraint which links the feed belt and table classes is:

– C3 “If a belt is ready to unload, and its table is ready to receive a blank,
then unloading may proceed”:

fbsw = On & fbend = On &
ertblank = Off & ertts = On ⇒ fbm = On

C3 is a constraint on the association between FeedBelt and ERTable: it specifies
that, for any pair of feed belt and table objects linked by this association, that
the given invariant must hold true. In this system the association represents
the physical connection between the robot system components: that the belt is
positioned to feed blanks to the table.

2.2 UML-RSDS Constraints

One significant feature of UML-RSDS class diagrams is that constraints may
be attached to associations, these represent an implicit universal quantification
over all the objects linked by the associations.

Table 1 shows the syntax of constraints currently accepted in UML-RSDS
constraints, within the UML-RSDS tools. A valueseq is a comma-separated se-

< value > ::= < ident > | Variable expression.
< number > | < string > | Primitive literal
< boolean > expressions.

< objectref > ::= < ident > |
< objectref >.< ident > | Navigation call expression.
< objectref > |(< expression >) Select expression.

< arrayref > ::= < objectref > |
< objectref >[< value >] At expression.

< factor > ::= < value > |
{ < valueseq > } | Collection literal
Sequence{ < valueseq > } | expressions.
< arrayref > |
< factor > op1 < factor > Infix binary operation call (1)

< expression1 > ::= < factor > op2 < factor > Infix binary operation call (2)
< expression > ::= < expression1 > |

(< expression >) |
< expression1 > op3 < expression > Infix binary operation call (3)

< invariant > ::= < expression > |
< expression > => < expression >

Table 1. UML-RSDS Constraint Syntax

quence of values. A factor level operator op1 can be: +, −, ∗, /, div , mod , \/,
/\ (also written as ∪ and ∩), or �. A comparator operator op2 is one of =, /=,
<, >, <=, >=, :, <:, /:, / <:. A logical operator op3 is one of &, or . Identifiers

are either class names, function names, class features (attribute, operation or
role names), elements of enumerated types, or represent variables or constants
(if in upper case). Variables are implicitly universally quantified over the entire
formula. Operations can also be written with parameters as op(p1, ..., pn), etc.

The notation objs | (predicate) denotes the select operator, and evaluates to
the set of elements of objs which satisfy predicate.

3 The UML-RSDS Tools

A large toolset has been developed to support UML-RSDS. The tool facilities
include:

1. Diagram creation and editing for class diagrams and state machines.
2. Syntactic and semantic checks on diagram correctness, including consistency

and completeness of constraints.
3. Transformations on UML models.
4. Automated translations from UML-RSDS specifications into SMV, the B

notation, and Java.

The translation and diagram checking operations are fully automated. Transfor-
mations are also automatically applied, but must be selected manually by the
tool user.

In addition, there is a tool UML2Web for the creation of web applications.

4 Translation from UML-RSDS to B

To semantically analyse UML models, and to animate (test using symbolic ex-
ecution) models, we use a translation to the B notation [1]. B is an established
formal method which has been extensively used in industry, particularly in the
European railway industry [9]. It has comprehensive tool support, the B Toolkit
[11], Atelier B [7] and B4Free.

The translation from UML-RSDS into B essentially represents the axiomatic
UML-RSDS semantics [10, 17, 19] of models in the B language. Each class E is
represented by a variable es (the set of instances of E currently existing) and
a type E OBJ with es ⊆ E OBJ . Each instance attribute att of type T is
represented by a map

att : es → T ′

where T ′ is the representation of T in B. Associations are also represented as
maps, Table 2 shows the most common cases.

Ordered associations are represented in a similar manner, except that the
range type of the B representation is seq(bs) instead of F(bs). Table 3 shows the
interpretation of some basic expressions.

The B Toolkit can then be used to check if a UML specification has a model,
non-trivial models, or to animate the specification. It can also be used to compare

Association B role type B invariants

A∗–r
∗B r : as → F(bs)

A0..1–
r
∗B r : as → F(bs) ∀ a.(a ∈ as ⇒ r(a) ∩ union(r [as − {a}]) = ∅)

A1–
r
∗B r : as → F(bs) ∀ a.(a ∈ as ⇒ r(a) ∩ union(r [as − {a}]) = ∅)

union(r [as]) = bs
A∗–r

1B r : as → bs
A0..1–

r
1B r : as � bs

Table 2. Representation of Associations in B

OCL Semantic Representation in B

Variable or constant x , primitive or string value x x
Attribute of single-valued expression obj .att att(obj)
Attribute of set-valued expression s.att att [s]
Role of single-valued expression obj .role role(obj)
Multiplicity ONE role of set-valued expression s.role role[s]
Non-ONE role of set-valued expression s.role union(role[s])

Table 3. The Interpretation of OCL expressions in B

two models to verify that one is a refinement of another, ie, that all functional
properties of one model are also true in a proposed refining model.

Proof obligations for internal consistency of a module in B are:

1. That there is some state which satisfies the module constraints and the
typing constraints.

2. That all the constraints are true in the initial state.
3. That each operation, if executed within its precondition, maintains the truth

of each constraint.

These correspond directly to similar properties of the UML-RSDS class or sub-
system from which the B module was derived. Together they ensure that the
constraints are always true, for each object of the class, at time points where no
operation is executing on the object provided that operations are only executed
within their preconditions (the latter becomes a proof obligation for callers of
the operations). Condition 3 ensures that each transition into a state of a state
machine attached to a class establishes the invariant of that state.

Animation can be used to check that state invariants of a class are consistent
with the class invariants: it should be possible to enter each state of the state
machine while satisfying the class invariants.

In the translation to B, the effect of an input event is made explicit: the
changes to all objects affected by the event are defined in the B operation which
represents the event. The semantics of inheritance, state machines and dynamic
binding are also made explicit in the B translation.

The translation to B uses a pragmatic approach which attempts to make the
resulting B specification as modular as possible, to enable a close correspondence
between the B and UML, and to improve the feasibility of proof. Classes A and
B are translated to separate B machines A and B unless:

1. A and B are linked by inheritance: all descendents of a class E without
ancestors are grouped into a single machine E .
If instead we require A and B to be represented by separate machines, the
transformation ‘replace inheritance by association’ can be applied before
translation to B.

2. A and B are members of a cycle of (directed) associations: an association
E →r F is represented as a variable r of E which refers to a variable of F ,
so that machine E USES machine F . Cycles are not permitted in the USES
relationship, so if there are dependencies in both directions the machines for
A and B must be extended by a third machine S representing the complete
subsystem of A, B and their linking associations together. The variables
representing the associations and the operations on these are placed in S .

Figure 3 shows an example of how UML structures are represented in B.

A

B

C
*

1

cr

A C

Controller

USES

INCLUDES
INCLUDES

UML−RSDS Structure B Structure

(combines
A and B)

Fig. 3. Structure of B Translation of UML

For the production cell there are no inheritances or cyclic dependencies of
classes, so all classes can be specified in separate B machines. A SystemTypes
machine encapsulates the type definitions of the system:

MACHINE SystemTypes

SETS State = {Off, On}; FeedBelt_OBJ; ERTable_OBJ

END

The FeedBelt machine gives the semantic representation of the FeedBelt class,
with attributes expressed as maps from the set of existing FeedBelt objects
(feedbelts) to their type sets, and operations synthesised to maintain the class
invariants:

MACHINE FeedBelt

SEES SystemTypes

VARIABLES feedbelts, fbsw, fbend, fbm

INVARIANT (feedbelts <: FeedBelt_OBJ) &

(fbsw : feedbelts --> State) &

(fbend : feedbelts --> State) &

(fbm : feedbelts --> State) &

/* C1: */

(!feedbeltx.(feedbeltx : feedbelts =>

(fbsw(feedbeltx) = Off => fbm(feedbeltx) = Off))) &

/* C2: */

(!feedbeltx.(feedbeltx : feedbelts =>

(fbsw(feedbeltx) = On &

fbend(feedbeltx) = Off => fbm(feedbeltx) = On)))

INITIALISATION feedbelts := {} ||

fbsw := {} || fbend := {} || fbm := {}

OPERATIONS

oo <-- new_FeedBelt(fbswx,fbendx,fbmx) =

PRE feedbelts /= FeedBelt_OBJ & fbswx : State &

fbendx : State & fbmx : State &

((fbswx = Off => fbmx = Off) &

(fbswx = On & fbendx = Off => fbmx = On))

THEN

ANY feedbeltx

WHERE feedbeltx : FeedBelt_OBJ - feedbelts

THEN feedbelts := feedbelts \/ {feedbeltx} ||

fbsw(feedbeltx) := fbswx ||

fbend(feedbeltx) := fbendx ||

fbm(feedbeltx) := fbmx ||

oo := feedbeltx

END

END;

setfbsw(feedbeltx,fbswxx) =

PRE feedbeltx : feedbelts & fbswxx : State

THEN fbsw(feedbeltx) := fbswxx ||

IF fbswxx = Off

THEN fbm(feedbeltx) := Off /* Derived from C1 */

ELSE IF fbswxx = On & fbend(feedbeltx) = Off

THEN fbm(feedbeltx) := On /* Derived from C2 */

END

END

END;

...

END

The controller machine defines all externally-available operations of the system,
and manages the global invariants.

For each operation such as setfbsw there is both a local version setfbsw of the
operation, defined in the machine representing the owning class of the operation,

and a global version set fbsw , defined in the Controller machine. The local
version carries out those updates of local features due to the operation, whilst
the global version carries out updates of non-local features.

The specifications of B operations are generated from UML-RSDS constraints.
These specifications are derived from three parts of the UML-RSDS models:

1. The invariant constraints of the system.
2. The pre and post constraints of the operation, together with its declaration

in its owning class.
3. The statemachine of the owning class.

Operations which update features may affect the truth of invariant con-
straints, both local and global. Therefore it may be necessary to define additional
effects for the operation, to maintain these constraints.

In general there are five stages in deriving operation code from invariant
constraints:

– For each individual constraint:
1. Identify if the operation can invalidate the constraint, and therefore if

new code needs to be added to the operation to ensure that the constraint
is not invalidated.

2. Identify what set of objects throughout the system can be affected by
the operation.

3. Identify what updates are required on each affected object to maintain
constraints.

4. Convert the update and the conditions under which it applies into B
notation.

– Integrate the B derived from each individual constraint into an overall effect
for the operation.

For example, in the case of setfbsw(fbswxx), this operation can violate both
C1 and C2. The new updates which need to be added are:

fbswxx = Off => AX(fbm = Off)

in the first case, and

fbswxx = On & fbend = Off => AX(fbm = On)

in the second. No further objects in the system are affected by these actions,
so the required updates are purely local to the feedbelt feedbeltx . The updates
become

IF fbswxx = OFF THEN fbm(feedbeltx) := Off END

and

IF fbswxx = On & fbend(feedbeltx) = Off
THEN fbm(feedbeltx) := On
END

in B notation. These can be integrated into a single operation using an IF THEN
ELSE structure as their conditions are mutually exclusive.

Operation postconditions can modify local features of a class. These updates
are specified in the same manner as in constraint succedents, with the addition
that the value of a modified attribute att at the start of the operation can be
referred to as att@pre.

Underspecified postcondition constraints such as

post: f > f@pre

can be formalised using the ANY construct of B.
Behavioural statemachines can be attached to a class C , to define how the

operations of that class change the state of the class. The transitions of the
statemachine can modify local features of the class and also invoke operations
of supplier objects. In the translation to B, the local updates are carried out
in the local version of the operation, and the non-local are carried out in the
Controller version.

The correctness of the translation can itself be verified by providing a com-
mon semantics for B and UML, and demonstrating that the B translation T (e)
of any UML element e has the same semantics as e [2].

The close correspondence between the UML and the B translation permits
analysis on the generated B to be interpreted directly in terms of the model it
is derived from.

5 Verification of Model Transformations

Transformations on UML models include:

1. Quality improvements, such as removing redundant classes or associations
2. PIM to PSM transformations, such as the replacement of many-many asso-

ciations by many-one associations (for implementation of a data model in a
relational database).

3. Introduction of detailed design elements, such as a design pattern.

A large number of UML model transformations are known in the modelling
community, and some, such as transformations of class diagrams to relational
database ER diagrams, have been embedded in commercial tools. We also pro-
vide a wide range of transformations in the UML-RSDS tools.

However, developers may need to apply variations of known model transfor-
mations, or devise new transformations, and the correctness of these should be
shown, so that properties of the original system are preserved in the transformed
system.

The translation from UML to B described in the previous section can be
used for such verification, by using the B concept of formal refinement. Figure
4 shows the approach adopted. The models on the LHS can be combinations of
class diagrams and state machines, as in transformations which introduce the
State pattern. Transformations between different modelling languages could also

Initial
UML
Model

Transformed
UML Model

Transformation

Translation to B: Model semantics B translation
of initial model

Translation to B: Model semantics

B refinement

B translation of
transformed model
as REFINEMENT
module

Fig. 4. Transformation Verification

be proved correct, provided both languages have a semantics expressible using
B.

A model transformation to be verified is expressed in a general form, and
both the original model and the transformed model are translated to B, which
expresses their semantics (the translation to B is performed automatically by
the UML-RSDS tool). The transformed model is defined in a B module which is
declared as a REFINEMENT of the B module which expresses the semantics of
the original model. The B proof obligations for refinement can then be generated
using a tool for B. These obligations are:

1. That the static invariants of the original module remain true (under the data
transformation) in the refined module.

2. That the possible initialisations of the refined module correspond to possible
initialisations of the original module.

3. That for each operation op of the refined module, its behaviour as defined in
the refined module is consistent with its behaviour as defined in the original
module. More precisely, each possible execution of the refined version of op
corresponds under the data transformation to a possible execution of the
original version.

The refinement proof in B establishes that all pre-post properties of operations
and that all invariant properties of the original UML model are also valid in the
transformed model.

Each such proof verifies a general family of model transformations. For exam-
ple, consider the transformation ‘replace many-many association by two many-
one associations’ shown in Figure 5.

The B module representing the semantics of the original model is:

MACHINE Model1

A B
* *

CA1 B1

* *1 1

br

a1r b1rcr1 cr2

ar

Fig. 5. ‘Replace many-many association’ Transformation

SETS A_OBJ; B_OBJ

VARIABLES as, bs, ar, br

INVARIANT (as <: A_OBJ) & (bs <: B_OBJ) &

(ar: bs --> FIN(as)) &

(br: as --> FIN(bs)) &

!ax.(ax : as =>

!bx.(bx : bs & bx : br(ax) => ax : ar(bx))) &

!ax.(ax : as =>

!bx.(bx : bs & ax : ar(bx) => bx : br(ax)))

INITIALISATION

as := {} || bs := {} || br := {} || ar := {}

OPERATIONS

addbr(ax,bx) =

PRE ax: as & bx: bs

THEN

br(ax) := br(ax) \/ {bx} ||

ar(bx) := ar(bx) \/ {ax}

END:

...

END

There are also operations to create A and B instances, and to remove elements
from the association, etc.

The model of the new system has the formalisation:

REFINEMENT Model2

REFINES Model1

SETS C_OBJ

VARIABLES a1s, b1s, a1r, b1r

INVARIANT (a1s <: A_OBJ) & (b1s <: B_OBJ) & (cx <: C_OBJ) &

(a1r: cs --> a1s) & (b1r: cs --> b1s) &

(cr1: as --> FIN(cs)) & (cr2: bs --> FIN(cs)) &

!ax.(ax : a1s =>

!cx.(cx : cs & cx : cr1(ax) => ax = a1r(cx))) &

!ax.(ax : a1s =>

!cx.(cx : cs & ax = a1r(cx) => cx : cr1(ax))) &

!bx.(bx : b1s =>

!cx.(cx : cs & cx : cr2(bx) => bx = b1r(cx))) &

!bx.(bx : b1s =>

!cx.(cx : cs & bx = b1r(cx) => cx : cr2(bx))) &

a1s = as & b1s = bs &

!ax.(ax : a1s => br(ax) = b1r[cr1(ax)]) &

!bx.(bx : b1s => ar(bx) = a1r[cr2(bx)])

INITIALISATION

a1s := {} || b1s := {} || cs := {} ||

b1r := {} || a1r := {} || cr1 := {} || cr2 := {}

OPERATIONS

addbr(ax,bx) =

PRE ax: a1s & bx: b1s

THEN

IF bx : b1r[cr1(ax)]

THEN skip

ELSE

ANY cx WHERE cx : C_OBJ - cs

THEN

cs := cs \/ {cx} ||

a1r(cx) := ax ||

b1r(cx) := bx ||

cr1(ax) := cr1(ax) \/ {cx} ||

cr2(bx) := cr2(bx) \/ {cx}

END

END

END;

...

END

The last four invariant conjuncts describe the refinement relation corresponding
to the data transformation, and they define how the data of the original model
is interpreted in terms of the new model.

The invariants of the original model must be proved correct for these inter-
pretations, for example the property that ar and br are inverse roles:

!ax.(ax : as =>
!bx.(bx : bs & bx : br(ax) => ax : ar(bx)))

must hold in the form:

!ax.(ax : a1s =>
!bx.(bx : b1s & bx : b1r[cr1(ax)] => ax : a1r[cr2(bx)]))

This is proved by using the corresponding properties of the pairs of inverse roles
a1r and cr1 and b1r and cr2.

For each operation, each execution of the operation according to the Model2
definition must satisfy the Model1 specification of the operation, under the in-
terpretation of Model1 data in Model2. Informally this is clear for addbr , since
if there is not already a cx with

ax = a1r(cx) & bx = b1r(cx)

then such a cx is created and results in bx being added to b1r [cr1(ax)], and ax
to a1r [cr2(bx)] as required. Formal proof of the transformation requires precise
assumptions (which might be neglected in informal definitions of UML transfor-
mations). In this case we require that no memory problems occur, and that it is
always possible to allocate a new cx object as required in the new definition of
addbr . We ensure this by fixing C OBJ as isomorphic to A OBJ ∗B OBJ , and
only permitting at most one cx object to be linked to a particular pair (ax , bx)
of A and B elements.

6 Related Work

Related work on UML is the U2B tool of Butler [24] as part of the RODIN project
[23], and translations [14] from UML to Object-Z. Constraints which need to be
manually specified in U2B are provided automatically for the developer by UML-
RSDS, such as preconditions for addrole operations on injective associations [4].

Verification of UML transformations is also treated in [15], using algebraic
interpretations, however this has limitations (simple patterns such as Value Ob-
ject cannot be treated, for example) which our approach avoids. Modelling trans-
forma tions in OCL is another alternative [6], however there are no proof tools
available for OCL comparable to the tools available for B. Likewise, the ap-
proaches of [5] and [26], using abstract machines (ASMs) and graph transfor-
mations, respectively, are limited by the lack of proof support for these rep-
resentations. B is a more semantically transparent (closer to ZF set theory)
representation than ASM. We also provide direct support for models enhanced
with OCL constraints, which these last two approaches do not.

Our approach to UML development is similar to that of [3], which carries out
performance analysis of a system specified in UML, by means of a translation
to a process algebra and analysis tools for this algebra. However this translation
is manual, which increases the cost and the risk of introducing errors, compared
to automated translations.

References

1. J-R Abrial. The B Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. Androutsopoulos, K., Verification of Reactive System Specifications using Model
Checking, PhD thesis, King’s College, 2004.

3. A. Bennett, A. Field, Performance Engineering with the UML Profile for Schedu-
lability, Performance and Time: A Case Study, Proc. IEEE/ACM International
Symposium on Modelling, Analysis and Simulation of Computer and Telecommu-
nication Systems (MASCOTS), Volendam, Netherlands, October 2004.

4. Butler, B., Leuschel, M., Snook, C., Tools for system validation with B abstract
machines, ASM 2005 - International Workshop on Abstract State Machines, Paris,
2005.

5. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E., Semantic Anchoring with
Model Transformations, ECMDA 2005.

6. Clark T., Evans A., Girish M., Sammut P., Willans J., Modelling Language Trans-
formations, L’Objet. Vol. 9, No 4, pp. 31–51, 2003.

7. ClearSy System Engineering, Atelier B, http://www.atelierb.societe.com/, 2004.
8. S Cook. UML semantics. MSDN Weblog, December 2004.
9. Patrick Behm, Paul Benoit, Alain Faivre, Jean-Marc Meynadier, Meteor: A Suc-

cessful Application of B in a Large Project, in Proceedings of FM’99: World
Congress on Formal Methods in the Development of Computing Systems, Toulouse,
France, September 1999. Jeannette Wing, Jim Woodcock and Jim Davies (Editors).

10. Bicarregui, J., Lano, K., Maibaum, T., Objects, Associations and Subsystems: a
hierarchical approach to encapsulation, ECOOP 97, LNCS, 1997.

11. B-Core UK Ltd., The BToolkit, 2005.
12. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, J., Symbolic Model Checking:

1020 States and Beyond, Proceedings of the Fifth Annual Symposium on Logic in
Computer Science, 1990.

13. M Glinz. Problems and deficiencies of UML as a requirements specification lan-
guage. In Proceedings of 10th International Workshop on Software Specification
and Design (IWSSD-10), pages 11–22, 2000.

14. Kim, S., Carrington, D., A Formal Mapping Between UML Models and Object-Z
Specifications, in ZB2000, LNCS Vol. 1878, Springer-Verlag, 2000.

15. P. Kosiuczenko, Redesign of UML Class Diagrams: a formal approach, Munich
University, 2003.

16. Lano, K., Logical Specification of Reactive and Real-Time Systems, Journal of Logic
and Computation, Vol. 8, No. 5, pp 679–711, 1998.

17. Lano, K., Clark, D., Androutsopoulos, K., Formalising Inter-model Consistency of
the UML, UML 2002, Workshop on Consistency Analysis of UML.

18. K. Lano, D. Clark, K. Androutsopoulos, RSDS: A Subset of UML with Precise
Semantics, L’Objet, Vol. 9, No. 4, 2003, pp. 53–73.

19. K. Lano, A Compositional Semantics of UML-RSDS, submitted to SoSyM, 2006.
20. C. Lewerentz, T. Lindner, Formal Development of Reactive Systems. Case Study

Production Cell, LNCS Vol. 891. Springer-Verlag, 1995.
21. A. Naumenko, A. Wegmann, Triune Contin-

uum Paradigm and Problems of UML Semantics,
icwww.epfl.ch/publications/documents/IC TECH REPORT 200344.pdf

22. OMG, UML OCL 2.0 Specification, ptc/2005-06-06, http://www.omg.org/uml/,
2005.

23. RODIN FP6 IST project, http://rodin.cs.ncl.ac.uk, 2006.
24. Snook, C., Butler, M., U2B – A tool for translating UML-B models into B, in Mer-

met J., (Ed.), UML-B Specification for Proven Embedded Systems Design, Chapter
6. Springer-Verlag, 2004.

25. J Spivey. The Z Notation. Prentice Hall, 1990.
26. Varro, D., Pataricza, A., Automated Formal Verification of Model Transformations,

CSDUML 2003.

