
Towards Model-Driven Unit Testing

Gregor Engels1,2, Baris Güldali1, and Marc Lohmann2

1 Software Quality Lab
2 Department of Computer Science

University of Paderborn, Warburgerstr. 100, 33098 Paderborn, Germany
engels@upb.de, bguldali@s-lab.upb.de, mlohmann@upb.de

Abstract. The Model-Driven Architecture (MDA) approach for con-
structing software systems advocates a stepwise refinement and trans-
formation process starting from high-level models to concrete program
code. In contrast to numerous research efforts that try to generate exe-
cutable function code from models, we propose a novel approach termed
model-driven monitoring. On the model level the behavior of an opera-
tion is specified with a pair of UML composite structure diagrams (visual
contract), a visual notation for pre- and post-conditions. The specified
behavior is implemented by a programmer manually. An automatic trans-
lation from our visual contracts to JML assertions allows for monitoring
the hand-coded programs during their execution.
In this paper we present an approach to extend our model-driven moni-
toring approach to allow for model-driven unit testing. In this approach
we utilize the generated JML assertions as test oracles. Further, we
present an idea how to generate sufficient test cases from our visual
contracts with the help of model-checking techniques.

1 Introduction

Everyone who develops or uses software systems knows about the importance of
software qualities, e.g. correctness and robustness. However, the growing size of
applications and the demand for shorter time-to-market hampers the develop-
ment of high-quality software systems. To get a better handle on the complexity,
the paradigm of model-driven development (MDD) has been introduced. In par-
ticular, the Object Management Group (OMG) favored a model-driven approach
to software development and pushed its Model-Driven Architecture (MDA) [1]
initiative as well as standards such as the Unified Modeling Language (UML)
that provides the foundation for MDA.

However, the MDA is still in its infancy compared to its ambitious goals
of having a (semi-)automatic, tool-supported stepwise refinement process from
vague requirements specifications to a fully-fledged running program. A lot of
unresolved questions exist for modeling tasks as well as for automated model
transformations.

Nevertheless, in today’s software development processes models are an es-
tablished part for describing the specification of software systems. In principle,
models provide an abstraction from the detailed problems of implementation



2 Gregor Engels, Baris Güldali, and Marc Lohmann

technologies. They allow software designers to focus on the conceptual task of
modeling static as well as behavioral aspects of the envisaged software system.
Unfortunately, abstraction naturally conflicts with the desired automatic code
generation from models as proposed by the MDA. To enable the latter, fairly
complete and low-level models are needed. Today, a complete understanding of
the appropriate level of detail and abstraction of models is still missing. Thus,
in today’s software development processes developers are normally building an
application manually with respect to its abstract specification with models.

In our work, we introduced a new modeling approach. We do not follow the
usual approach that models should operate as source for an automatic code gen-
eration step that produces the executable function code of the program. Rather,
we restrict the modeling task to providing structural information and minimal
requirements towards behavior for the subsequent implementation. We expect
that only structural parts of an implementation are automatically generated,
while the behavior is manually added by a programmer.

As a consequence it can not be guaranteed that the hand-coded implemen-
tation is correct with respect to the modeled requirements. Therefore, we have
shown in previous publications [2–4] how models can be used to generate asser-
tions which monitor the execution of the hand-coded implementation. Herewith,
violations of the modeled requirements will be detected at runtime and reported
to the environment. We call this novel approach model-driven monitoring.

Model-driven monitoring is based on the idea of Design by Contract (DbC)
[5], where so-called contracts are used to specify the desired behavior of an
operation. Contracts consist of pre- and post-conditions. Before an operation
is executed, the pre-condition must hold, and in return, after the execution of
an operation, it has to be guaranteed that the post-condition is satisfied. The
DbC approach has been introduced at the level of programming languages. For
instance, the Java Modeling Language (JML) extends Java with DbC concepts
[6]. JML assertions are based on Java expressions and are annotated to the source
code. During the execution of such an annotated Java program, the assertions
are monitored. An exception is raised as soon as a violation of the assertions is
detected.

With the concepts of visual contracts [2] we have lifted the idea of contracts
to the level of models. A visual contract allows for specifying a contract by
pairs of UML composite structure diagrams for the pre- and post-conditions. A
transformation of our visual contracts into JML allows for monitoring a system
that is implemented manually.

Now we want to extend our approach to allow for model-driven unit testing.
The visual contracts respectively the generated JML assertions are viewed as test
oracles to decide whether the results calculated by a hand-coded implementation
are correct. Additionally, we want to generate test cases from our models with
the help of model-checking techniques.

This paper is organized as follows: the following section gives an overview
of our approach. In Sect. 3 the visual contracts are explained. Section 4 shortly
explains how to generate assertions from visual contracts. Section 5 describes



Towards Model-Driven Unit Testing 3

our testing approach on a conceptual level. In Sect. 6 we give an overview of
available tools that can be used for automation of our testing approach. In
Sect. 7 we discuss related work and finally we conclude the paper.

2 Enabling Model-Driven Unit-Testing with
Model-Driven Monitoring

Model-driven monitoring [2–4] constitutes a novel strategy for model-driven soft-
ware development beyond the classical idea of model-driven development cen-
tered upon the automatic generation of function code. Model-driven monitoring
lends itself to both model-driven and agile software development methods. We
enable model-driven monitoring by embedding visual contracts in a model-driven
software development process. Visual contracts are interpreted as models of be-
havior from which code for runtime assertion checking can be generated. The
visual contracts also specify the behavior which is then manually implemented
by programmers.

Test-driven development [7] is an important part of agile processes. E.g. Ex-
treme Programming (XP) [8], the most prominent of several agile software devel-
opment processes, emphasizes the test-first approach. When handling a program-
ming task, programmers always begin writing unit tests. This test formalizes the
requirements. If all tests run successfully then the coding is complete. To accent
the agile part of our model-driven monitoring approach we want to support the
test-driven development by enabling model-driven unit testing. Therefore, be-
side the generation of runtime assertions we want to automatically generate test
cases from our models. Figure 1 shows our model-driven software development
process enabling model-driven monitoring and model-driven unit testing.

On the design level, a software designer has to specify a model of the system
under development. This model consists of class diagrams and visual contracts.
The class diagrams describe the static aspects of the system. Each visual contract
specifies the behavior of an operation. The behavior of the operation is given in
terms of data state changes by pre- and post-conditions, which are modeled by
a pair of UML composite structure diagrams as explained in Sect. 3.

In the next step, we generate code fragments from the design model. This
generation process consists of two parts. First, we generate Java class skeletons
from the design class diagrams. Second, we generate JML assertions from every
visual contract and annotate each of the corresponding operations with the gen-
erated JML contract. The JML assertions allow us to check the consistency of
models with manually derived code at runtime. The execution of such checks is
transparent in that, unless an assertion is violated, the behavior of the original
program remains unchanged.

Then, a programmer uses the generated Java fragments to fill in the missing
behavioral code in order to build a complete and functional application. His pro-
gramming task will emanate from the design model of the system. Particularly,
he will use the visual contracts as reference for implementing the behavior of
operations. He has to code the method bodies, and may add new operations to



4 Gregor Engels, Baris Güldali, and Marc Lohmann

Fig. 1. Overview of the testing approach

existing classes or even completely new classes, but he is not allowed to change
the JML contracts. If new requirements for the system demand new function-
ality then the functionality has to be specified with visual contracts before the
programmer can start programming. Using our visual contracts this way in a
software development process resembles Agile Development and Extreme Pro-
gramming approaches, where a developer has to specify a set of test cases before
implementing the code.

When a programmer has implemented the behavioral code, he uses the JML
compiler to build executable binary code. This binary code consists of the pro-
grammer’s behavioral code and additional executable runtime checks which are
generated by the JML compiler from the JML assertions. The manual implemen-
tation of a programmer leads to system state changes. The generated runtime
checks monitor the pre- and post-conditions during the execution of the system.
Thus, we support model-driven monitoring of implementations by transforming
our visual contracts into contracts in JML.

To further integrate agile respectively extreme programming approaches in
our model-driven software development process we additionally want to integrate



Towards Model-Driven Unit Testing 5

model-driven unit testing in our development process. Therefore, we have to
address the following three problems of model-driven testing [9]:

1. the generation of test cases from models,
2. the generation of a test oracle to determine the expected results of a test,
3. the execution of tests in test environments.

The basic idea of our testing approach is that the specification of an operation
by a pre- and post-conditions (visual contract) can be viewed as a test oracle
[10, 11] and runtime assertion checking can be used as a decision procedure for a
test oracle. That means the runtime checks generated by the JML compiler can
be used as test oracles. Thus, our visual contacts can be viewed as test oracles
since the JML assertions are generated from our visual contracts. On the code
level, this idea is supported by the tool JMLUnit which combines JML with the
popular unit testing tool JUnit for Java. Still, we need to answer the problem
of how to generate test cases from models. Therefore, we want to combine well-
known testing techniques for the generation of test input parameters and model
checking to be able to create concrete system states. The idea how to create test
cases is described in detail in Sect. 5.1.

3 Modeling with Visual Contracts

We show how to specify a system with visual contracts by the example of an
online shop. We distinguish between a static and a functional view.

UML class diagrams are used to represent the static view of a system spec-
ification. Figure 2 shows the class diagram of the sample online shop. We use
the stereotypes control and entity as introduced in the Unified Process [12].
Each of these stereotypes expresses a different role of a class in the implemen-
tation. Instances of control classes encapsulate the control related to a specific
use case and coordinate other objects. Entity classes model long-lived or per-
sistent information. The stereotype key indicates key attributes of a class. A
key attribute is a unique identifier for a set of objects of the same type. The
control class OnlineShop is connected to the entity classes of the system via
qualified associations. A rectangle at an association end with a qualifier (e.g.
productNo) designates an attribute of the referenced class. In combination with
the key-attributes of a class, the qualifier allows us to get direct access to a
specific object.

Class diagrams are complemented by visual contracts that introduce a func-
tional view integrating static and dynamic aspects. Visual contracts allow us to
describe the effects of an operation on the system state of the system. Thus, for
our visual contracts we take an operation-wise view on the internal behavior.

In the following, we want to explain our visual contracts by two examples.
The operation cartCreate of the control class OnlineShop creates a new cart.
Figure 3 shows a visual contract that describes the behavior of the operation. The
visual contract is enclosed in a frame, containing a heading and a context area.
The keyword vc in the heading refers to the type of diagram, visual contract in



6 Gregor Engels, Baris Güldali, and Marc Lohmann

Fig. 2. Class diagram specifying static structure of online shop

Fig. 3. Visual contract for operation cartCreate

this case. The keyword is followed by the name of the operation that is specified
by the visual contract. The operation name is followed by a parameter-list and
a return-result if they are specified in the class diagram. The parameter-list is
an ordered set of variables and the return-result is also a variable. The variables
of the parameter-list and the return-result are used in the visual contract.

The visual contract is placed in the context area. Structurally, a visual
contract consists of two graphs, representing the pre-condition and the post-
condition of an operation. The graphs are visualized by UML composite struc-
ture diagrams [13]. Each of the graphs is typed over the design class diagram. The
semantics of our visual contracts is defined by the loose semantics of open graph
transformation systems [14]. The basic intuition for the interpretation of a visual
contract is that every model element, which is only present on the right-hand side
of the contract, is newly created, and every model element that is present only
on the left-hand side of the contract, is being deleted. Elements that are present
on both sides are unaffected by the contract. Additionally, we may extend the
pre- or post-condition of a visual contract by negative pre-conditions (i.e., neg-
ative application conditions [15]) or respectively by negative post-conditions. A
negative condition is represented by a dark rectangle in the frame. If the dark
rectangle is on the left of the pre-condition, it specifies object structures that
are not allowed to be present before the operation is executed (see Fig. 4). If the
dark rectangle is on the right of the post-condition, it specifies object structures
that are not allowed to be present after the execution of the operation.



Towards Model-Driven Unit Testing 7

Fig. 4. Visual contract for operation cartAdd

The contract as described in Fig. 3 expresses that the operation cartCreate
can always be executed, because the pre-condition only contains the model ele-
ment self, i.e. the object executing the operation. As an effect, the operation
creates a new object of type Cart and a link between the object self and the
new object of type Cart. Additionally, the object c:Cart is the return value of
the operation cartCreate as indicated by the variable c used in the heading.

Figure 4 shows a more complex contract specifying the operation cartAdd.
This operation adds a new CartItem, which references an existing Product, to
an existing Cart. In contrast to the visual contract of Fig. 3, the variables of the
parameter-list and the return-value are now used to specify values of attributes
of different objects. For a successful execution of the operation, the object self
must know two different objects with the following characteristics: an object of
type Cart that has an attribute cartId with the value cid, and an object of
type Product that has an attribute productNo with the value prNo. The concrete
argument values are bound when the client calls the operation. The Cart object
is reused in the negative pre-condition (compare object identifiers). The negative
pre-condition extends the pre-condition by the requirement that the Cart object
is not linked to any object of type CartItem that has an attribute productNo
with the value prNo. This means, it is not permitted that the product is already
contained in the cart. As a result, the operation creates a new object of type
CartItem with additional links to previously identified objects. The return value
of the operation is the content of the attribute cartItemId of the newly created
object.

4 Translation to JML

After describing the modeling of a software system with visual contracts, we now
present how the model-driven software development process continues from the
design model. A transformation of visual contracts to JML constructs provides



8 Gregor Engels, Baris Güldali, and Marc Lohmann

for model-driven monitoring of the contracts. The contracts can be automati-
cally evaluated for a given state of a system, where the state is given by object
configurations. The generation process as well as the kind of code that is gener-
ated from a class diagram and the structure of a JML assertion that is generated
from a visual contract are described in detail in [2, 4]. Here we only describe the
transformation more generally and from a methodical perspective.

4.1 Transformation of Class Diagrams to Java

Each UML class is translated to a corresponding Java class. Attributes and
associations are complemented by the corresponding access methods (e.g., get,
set). For multi-valued associations we use classes that implement the Java inter-
face Set. Qualified associations are provided by classes that implement the Java
interface Map. We add methods like getProduct(int productNo) that use the
attributes of the qualified associations as input parameters. Operation signatures
that are specified in the class diagram are translated to method declarations in
the corresponding Java class up to syntactic modifications according to the Java
syntax.

4.2 Transformation of Visual Contracts to JML

For each operation specified by a visual contract, the transformation of the con-
tract to JML yields a Java method declaration that is annotated with JML asser-
tions. The pre- and post-conditions of the generated JML assertions are interpre-
tations of the graphical pre- and post-conditions of the visual contract. When
any of the JML pre- and post-conditions is evaluated, an optimized breadth-
first search is applied to find an occurrence of the pattern that is specified by
the pre- or post-condition in the current system state. The search starts from
the object self (object this in Java syntax) which is executing the specified be-
havior (compare [16]). If the JML pre- or post-condition finds a correct pattern,
it returns true, otherwise it returns false.

5 Test Case Generation and Test Execution

In the previous sections we explained how a software designer develops a design
model and how Java class skeletons and JML assertions can be generated from
them. We also explained how a programmer can complete the generated code
fragments to build a complete executable application. After these steps we want
to test our application. In Sect. 2 we explained the three tasks of model-driven
testing. In this section we will explain how we handle the first and the third task,
i.e. the generation of test cases and the execution of a test. The second task (the
generation of a test oracle) is described in Sect. 4 since we can interpret the JML
assertions as test oracles.

Similar to classical unit-testing, our test items are operations. The behavior
of an operation is dependent of the input parameters and the system state. Thus,



Towards Model-Driven Unit Testing 9

a test case has to consider the parameter values of an operation and a concrete
system state.

5.1 Test Case Generation

A test case for an operation consists of concrete parameter values and a concrete
system state. We can generate a test case for an operation from our model in
three successive steps. In the following, we explain how to generate a sample test
case for the operation cartAdd (Fig. 4). Figure 5 illustrates the three steps.

In the first step, we generate values for the input parameters of an operation
as specified in the class diagram. In Fig. 5 we generated the parameter values for
the operation cartAdd randomly. For the parameter cid of type String the value
“abc” is generated. The parameter prNo of type String gets the value “def”
and the variable num of type Integer gets the value “1”. Beside a the random
generation of input parameters, we could also use other techniques for test data
generation, e.g. equivalence-class partitioning or boundary value analysis (see
e.g. [17]).

To generate a sufficient system state for testing, we have to execute two
further steps. Since the visual contracts specify system state requirements, we
use them as source for generating the system states. Therefore, we initialize the
pre-condition of a visual contract with the parameter values generated in step
one. The variables in the parameter-list are used to restrict the attribute values
of objects in the pre-condition as explained in Sect. 3. Thus, the initialization
gives an object structure. In this object structure some of the attributes have
concrete values. Figure 5 shows how the attributes productNo and cartId of
the classes Product and Cart are initialized with the parameter values of step
one according to the pre-condition in Fig. 4. It is important to notice that this
object structure describes a system state only partially.

In the last step of our test case generation, we have to find out how to
generate a system state which contains the object structure found in step two.
Due to the fact that the object structure in the previous step defines a system
state only partially, we cannot just build a system state by creating the known
objects and attribute values. Such a system state would be incomplete and it
would be artificial in a sense that the application would never create such a
system state at runtime. Additional objects or attribute values can be created
during the execution of the systems at runtime and these may have side-effects
on the execution of an operation. Thus, tests should work on realistic system
states. To avoid these artificial system states it would be useful to build a system
state by using the control operations of the system itself. We assume that each
operation call leads to a state change of the system. Thus, we have to find a
sequence of operation calls that starting from the initial state lead to a sufficient
system state which contains the object structure found in step two. As a visual
contract describes the system state change of an operation, we can use these
contracts to compute all possible states of the system. Therefore, we consider a
system state as a graph and the visual contracts constitute production rules of a
graph transition system. Figure 5 illustrates how we want to generate a transition



10 Gregor Engels, Baris Güldali, and Marc Lohmann

Fig. 5. Three steps of test case generation

system. Initially the system state comprises just an instance (self) of the con-
troller class OnlineShop. Executing, e.g., the operation cartCreate makes the
in Fig. 3 specified changes on the system state. Thus, a new object of type Cart
is generated and linked to the control object self. Executing further operations
brings the system to a state sv which contains the object structure generated
in step two. Knowing all visual contracts and an initial state, we can compute
the graph transition system and search for a production sequence that creates a
system state which contains the object structure found in step two. These com-
putations can be done automatically with model checking techniques [18]. The
computed production sequence directly refers to an operation sequence which
brings the system state to some desired state containing the object structure
computed in step two. If no sufficient production sequence is found in the graph
transition system (the searched object structure cannot be constructed using the
existing operations), our test case generation approach has to backtrack to step
one and generate other test data.

5.2 Test Execution with Embedded Oracles

After test cases are generated, the test execution can start. Test execution com-
prises two main steps as shown in Fig. 6. First, the operation sequence deter-
mined by the test case generation must be executed in order to set the system
state. Second, the operation under test is called with the test input parameters
also generated by the test case generation.

The embedded assertions lead to a run-time behavior of an operation call as
shown in Fig. 6. When the operation under test is called, a pre-condition check
method evaluates the method’s pre-condition and throws a pre-condition viola-
tion exception if it does not hold. If the pre-condition holds, then the original,



Towards Model-Driven Unit Testing 11

Fig. 6. Run-time behavior of test execution

manually implemented operation is invoked. After the execution of the origi-
nal operation, a post-condition check method evaluates the post-condition and
throws a post-condition violation exception if it does not hold. If the embed-
ded assertions throw an exception then the implementation does not behave
according to its specification. Thus, we have found an error.

6 Tool Support

Most of the steps of our approach can be supported by tools. In former pub-
lications we have reported on our Visual Contract Workbench, an integrated
development environment for using visual contracts in a software development
process [19]. This development environment allows software designers to model
class diagrams and specify the behavior of operations by visual contracts. It
further supports automatic code generation as described in Sect. 4.

The most challenging task of our test generation approach is finding an oper-
ation sequence for setting a system state as explained in Sect. 5.1. This task can
be automatically solved by model checking tools. A candidate for our purposes
is GROOVE [20], a model checker for attributed graph transition systems. For
that, we consider to interpret our visual contracts and our test inputs as graph
transformation rules in GROOVE. A reachability analysis can show whether a
system state containing the object structure in the test input can be reached in
the graph transition system. If this is true, we expect GROOVE to supply us
with a witness path, representing the desired operation sequence.

The test execution can be implemented by a test driver (see Fig. 6). The
test driver will execute the operation sequence computed by the model checker
before the actual test of the operation under test can begin. In the context of
JML, we can use the JMLUnit tool [21] for this purpose. This tool combines



12 Gregor Engels, Baris Güldali, and Marc Lohmann

JML with the popular unit testing tool JUnit for Java. JMLUnit views a JML
assertion of an operation by pre- and post-conditions as a test oracle. A runtime
assertion checker can then be used as the decision procedure for the test oracle.

7 Related Work

Using models for test generation is intensively studied by the model-driven test-
ing community [22, 23], especially for black-box software testing. To the best of
our knowledge using visual models for unit-testing is a new idea. However using
contracts for testing purposes is a well-known technique (contract-based testing
[24, 25]). We will mention here a few recent publications in this area and show
the differences to our approach.

A recent work [25] explores a fully automatic testing of Eiffel programs with
DbC. The authors developed a tool suite AutoTest which randomly generates
test cases. A major disadvantage of the approach is that for test case generation
they do not take the pre-conditions into account. However, the authors state in
[25] that they are currently working on this problem.

The Korat tool [26] uses JML specifications for test case generation for Java
programs and handling the oracle problem. The contribution of our approach
compared with this approach is that we lift the model abstraction one level
higher, where our approach supports behavioral specification in the design phase
by using UML notation.

In [27] graph transformation rules are used for test case generation in the con-
text of web services. Test cases are generated from the behavioral specifications
and executed via a pre-defined testing interface to ensure the correct funtioning
of the web service which is considered as a black-box system. A clear statement
about setting a sufficient system state in a black-box system is missing in this
work.

8 Conclusion

We have developed an approach that lifts the Design by Contract (DbC) idea,
which is usually used at the code level, to the model level. Visual contracts are
used as a specification technique. They are used to specify system state trans-
formations with pre- and post-conditions. Pre- and post-conditions are modeled
by UML (composite) structure diagrams. By using UML, we build on a well-
known standard that is predominantly used in todays model-driven development
processes. Further, we presented how to use the visual contracts in a software
development process. A translation of the visual contracts into the Java Model-
ing Language, a DbC extension for Java, enables the model-driven monitoring.
To support our model-driven monitoring method, we provide a visual contract
workbench that allows developers to coherently model class diagrams and visual
contracts. Further the workbench supports automated code generation.



Towards Model-Driven Unit Testing 13

In this paper, we have shown how we want to extend our approach with
model-driven unit testing. In our testing approach, a test case consists of para-
meter values and a concrete system state. The visual contracts – respectively the
generated JML assertions – are viewed in our approach as test oracles to decide
whether a manual implementation is correct according to its specification.

In future work we will have to concretize our model-driven unit testing ap-
proach and extend our visual contract workbench with testing facilities.

References

1. Meservy, T.O., Fenstermacher, K.D.: Transforming software development: An
MDA road map. IEEE Computer 38(9) (2005) 52–58

2. Lohmann, M., Sauer, S., Engels, G.: Executable visual contracts. In Erwig, M.,
Schürr, A., eds.: 2005 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’05). (2005) 63–70

3. Engels, G., Lohmann, M., Sauer, S., Heckel, R.: Model-driven monitoring: An
application of graph transformation for design by contract. In: International Con-
ference on Graph Transformation (ICGT) 2006. (2006) accepted for publication.

4. Heckel, R., Lohmann, M.: Model-driven development of reactive informations sys-
tems: From graph transformation rules to JML contracts. International Journal on
Software Tools for Technology Transfer (STTT) (2006) accepted for publication.

5. Meyer, B.: Applying ”Design by Contract”. IEEE Computer 25(10) (1992) 40–51
6. Leavens, G., Cheon, Y.: Design by Contract with JML (2003)
7. Beck, K.: Test Driven Development: By Example. Addison-Wesley Professional

(2002)
8. Beck, K.: Extreme Programming Explained. Embrace Change. The XP Series.

Addison-Wesley Professional (1999)
9. Heckel, R., Lohmann, M.: Towards model-driven testing. Electr. Notes Theor.

Comput. Sci. 82(6) (2003)
10. Antoy, S., Hamlet, D.: Automatically checking an implementation against its for-

mal specification. IEEE Transactions on Software Engineering 26(1) (2000) 55–69
11. Peters, D.K., Parnas, D.L.: Using test oracles generated from program documen-

tation. IEEE Transactions on Software Engineering 24(3) (1998) 161–173
12. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development

Process. Addison-Wesley Professional (1999)
13. OMG (Object Management Group): UML 2.0 superstructure specification - revised

final adopted specification (2004)
14. Heckel, R., Ehrig, H., Wolter, U., Corradini, A.: Double-pullback transitions and

coalgebraic loose semantics for graph transformation systems. APCS (Applied
Categorical Structures) 9(1) (2001) 83–110

15. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26(3,4) (1996) 287–313

16. Zündorf, A.: Graph pattern matching in PROGRES. In Cuny, J., Ehrig, H.,
Engels, G., Rozenberg, G., eds.: 5th. Int. Workshop on Graph-Grammars and their
Application to Computer Science. LNCS 1073 (1996)

17. Binder, R.V.: Testing Object-Oriented Systems. Addison-Wesley (2000)
18. Rensink, A., Schmidt, Á., Varró, D.: Model checking graph transformations: A

comparison of two approaches. In: International Conference on Graph Transfor-
mation (ICGT) 2004. (2004) 226–241



14 Gregor Engels, Baris Güldali, and Marc Lohmann

19. Lohmann, M., Engels, G., Sauer, S.: Model-driven monitoring: Generating as-
sertions from visual contracts. In: 21st IEEE/ACM International Conference on
Automated Software Engineering (ASE) 2006 Demonstration Session. (2006) ac-
cepted for publication.

20. Rensink, A.: The GROOVE simulator: A tool for state space generation. In:
Applications of Graph Transformations with Industrial Relevance (AGTIVE) 2003.
(2003) 479–485

21. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The
JML and JUnit way. In: European Conference on Object-Oriented Programming
(ECOOP) 2002. (2002) 231–255

22. Hartman, A., Nagin, K.: The AGEDIS tools for model based testing. In: UML
Satellite Activities. (2004) 277–280

23. El-Far, I., Whittaker, J.: Model-based software testing. In Marciniak, J., ed.:
Encyclopedia of Software Engineering. Wiley (2001)

24. Heckel, R., Lohmann, M.: Towards contract-based testing of web services. Electr.
Notes Theor. Comput. Sci. 116 (2005) 145–156

25. Ciupa, I., Leitner, A.: Automatic testing based on Design by Contract. In: Pro-
ceedings of Net.ObjectDays 2005 (6th Annual International Conference on Object-
Oriented and Internet-based Technologies, Concepts, and Applications for a Net-
worked World). (2005) 545–557

26. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on java
predicates. In: International Symposium on Software Testing and Analysis (ISSTA)
2002. (2002) 123–133

27. Heckel, R., Mariani, L.: Automatic conformance testing of web services. In: Fun-
damental Approaches to Software Engineering (FASE) 2005. (2005) 34–48


