Model Checking Dynamic and Hierarchical
UML State Machines

Toni Jussild, Jori Dubrovirf, Tommi Junttil&, Timo Latval&, and Ivan Porre's

1 Johannes Kepler Universitat Linz
2 Helsinki University of Technology
3 University of lllinois at Urbana-Champaign
4 Abo Akademi University

Abstract. This paper presents a technique to model check UML spedditat
by translating UML models to the model checker SPIN. Our nwdensist of ac-

tive UML classes, whose behavior is defined by hierarchigaésnachines. The
intended application is to find errors in protocols commatiig using asyn-
chronous message passing. Compared to previous effortg assimilar ap-

proach, our novel points are the following. First, we coaesid subset of UML

that in our opinion is expressive enough for protocol modbetsallows a simpler
translation to SPIN than existing work. Preliminary anaysf simple industrial

models support our conclusions on the expressivity of oulLUdMbset. Second,
we present a powerful action language that is still amertaldetomatic analysis.
The action language is used to specify the effects of triansit which may in-

clude dynamic creation of new objects. Finally, we discussewen simpler SPIN
translation for flattened UML state machines and compare ih¢ translation

that supports hierarchy.

1 Introduction

Model-based approaches for system design have been stisdi@dlong time. Ad-
vantages associated with model-based approaches aralséledels give designs a
restricted implementation independence, and they alseigga convenient form of
documentation. However, arguably the most important beisefhat the level of ab-
straction of the design is raised. This has many implicatigxbstract models allow
efficient communication of the design, since unnecessasjldare hidden. They also
facilitate testing and verification of the design at an eathge, the topic of this paper.
The widely acknowledged benefit of this is that it is much glezdo detect and correct
software errors early in the design process.

We report preliminary results from a project, where the go#d find errors in pro-
tocol designs usinghodel checkingln our approach, the protocols are modeled using
UML class diagrams and state machines. The Unified Modelamtguage (UML) is a
standardized graphical notation for modeling and documgbject-oriented software
and business processes. UML is also the most widespreaebsefinodeling language,
and it is accepted in the industry as the standard languagsoftware analysis and
design. UML state machine models can fairly naturally cepprotocol designs, where

the communication is asynchronous and data can be abstrsittethe class subtyping
mechanism.

Our approach to model checking UML designs is based on ubimgtate-of-the-
art model checking tool, SPIN [1]. Models with assert speatfbns are automatically
translated to SPIN’s input language, and counterexample®e simulated. More ad-
vanced properties can be specified in the SPIN model as tatripgic formulae.

Our work improves or differs from previous work in the follow ways. The subset
of UML we support has specifically been chosen to be expressiough for our in-
tended application, modelling protocols, yet it allows agise and fairly simple formal
semantics. We present an action language, which is usecetifggffects of transi-
tions, that is powerful and amenable to automatic analgipported features include
dynamic creation of objects, the usual flow constructs, aitdraetic expressions. We
also discuss a simpler SPIN translation for flattened statehimes and compare it to
the translation that supports hierarchy.

2 Related Work

The idea of applying model checking on UML-type state maghmirodels is not new.
Latella et al. [2] present a translation from UML state maeisito PROMELA, the in-
put language of SPIN. They only allow a model to contain alsistate machine. In
another translation by Mikk [3], the input language is not Ubut statecharts, which
is a similar formalism with different semantics. Perhapesttosest work to ours is [4]
which presents a tool called vUML that translates UML to PREXM. vUML supports
a larger subset of UML than our approach. This, however, iagffect that the trans-
lation of a UML state machine is more complex; it requires decblock that chooses
the transitions to be fired and another block that models fleets of transitions. All
these works have the limitation that no data attributes esasisociated with objects or
state machines. Consequently, there is no action langaadehe only possible effect
of a transition is to send signals with no parameters.

The Hugo project [5] also supports SPIN as a back-end towé&iL models.
Their initial PROMELA translation was only feasible for yesmall models, and the
current version of the tool follows ideas similar to those@WML. To our knowledge,
the translation is undocumented. In [6], SPIN is used to geagest cases from abstract
state machines. The OMEGA project [7] has created a toolosetsing on real-time
properties. Their approach is based on translating UML édRintermediate language
that has several model checking back ends. The Rhapsody #ufication environ-
ment [8] supports model checking of UML state machines bgdieting the models
to the input language of the VIS symbolic model checker. Mdigli constructs are
supported, and the action language is a restricted subset-of Features that are not
supported include deferred events and do activities.

3 UML Subset and Semantics

In our framework, a UML model contains classes, state mashiand deployment dia-
grams. Classes may contain instance attributes, i.e. datasvassociated with objects,

and there may be associations between classes. Operdttoareanot supported. Also,
a class cannot be a subtype of another class, but we are p¢gionincorporate support
for subtype relationships. We assume that all classes &ve atasses whose behavior
is defined by behavioral state machines, discussed belowrAtime, objects com-
municate with each other asynchronously using signalsaéisgnmay have associated
parameter values. A deployment diagram is used to speafinttial configuration of
objects.

3.1 A Well-Defined UML State Machine Language

Compared to standard UML state machines, we consider atsiihégis motivated by
the need of a precise behavioral design language that caerified efficiently.

UML offers two mechanisms for modeling concurrency: actigects communi-
cating with signals, and orthogonal regions in the statehimacof an object. We argue
that the first approach is often preferable in an object teiésetting, where it is more
natural to put emphasis on communicating objects (whichbeaglynamically created)
instead of concurrent behavior within a single object. bdjehe commercial UML tool
Telelogic Tau [9] does not even allow orthogonal regiong@tesmachines.

Our subset allows orthogonality, but we propose a restridtiat no two transitions
in orthogonal regions can be enabled by the same event. We #rgt this violates the
idea of orthogonality and creates complicated dependsiitét are hard to understand
and analyze. Together with execution semantics in whichast mne completion tran-
sition (transition without an explicit trigger) is fired atiene, the restriction guarantees
that at most one region changes its state in each step. Thissponds to interleav-
ing execution semantics suitable for the SPIN model cheeket results in a simple
implementation of the transition selection algorithm.

UML allows continuous do activities in states, but we omérthbecause the model
checker executes models in discrete steps. Furthermordpwmt currently support
history pseudostates, fork or join pseudostates, or engyibactivities in states. These
are advanced modeling concepts that could later be incatgato our framework.

In the following, the structure of state machines is formedi.

3.2 Structure of State Machines

A state machine contairsdatesandtransitionsbetween them. Aomposite stateon-
tains one or more orthogom@gions which in turn contain substates. During execution,
one or more states aegetive If a composite state is active, then exactly one direct sub-
state in each region is active. Whenever a substate is aitveontaining composite
state is also active.

Let X be a finite set of states consisting of simple sta¥gs,,,;., initial pseu-
dostates ;,;iqai, choice pseudostates, .., final statestg,,,;, and composite states
Y composite; and letR be a finite set of regions. We definehild relation ™\, such that
if a regionr of a composite state directly contains a state thenc \, r andr \ s.

Definition 1. A tUpleH = <Esimple; Einitial; Echoicea Zﬁnala Zcompositea R; tOp, \>
is astate hierarchiff \C Xcomposite X RUR x X, and(X UR,) is a tree rooted
at top € R such that the set of leaves of the tre&l§ X, osite-

Main

—f :) [x==0]
[Sy t4: /a=true;
t:x=10; |11 (AY=(B)—+® ®
a=false; F1
s Stick[x>0]/x=x—1; [{9: e[q==
2 > [19: e[a==true] -
4>-Fallure
!$tiok[x<10]
| R@®)

Fig. 1. Running example.

The inverse relation ol is the functiorparent : ZUR\{top} — Xcomposite UR,
giving the parent region of a state or the parent composite &if a non-top region.
Thus, the direct substates of a composite statee the states such thaparent?(s) =
c. The set of proper descendants of a state or regisrdefined bydescendants(v) =
{v € JUR | v \/T v}, where\ /T denotes the irreflexive transitive closure qf

Two states, so € X areorthogona) denoteds; L s, iff there are regions;, r» €
R such thatry # ro, parent(r1) = parent(rs), s1 € descendants(ry), andsy €
descendants(r2). A setS C X is consistentff for any two distinct states;, ss € S
eithers; L so, s1 € descendants(sz), Or so € descendants(s1). In particular, the set
of active states in a state machine is always a maximal densiset, i.e. a consistent
set that is not a proper subset of any other consistent set.

Consider the state machine diagram shown in Fig. 1. StateslA@op are orthog-
onal, thus they can be active at the same time. In this situgtihe entire set of active
states would bgMain, A, Loop}. Notice that regions are not explicitly drawn in dia-
grams. Instead, the regions of a composite state are sepdnpt dashed line, and the
top region contains the entire diagram.

A state machine transition is defined as follows. First, veiate the existence of a
finite set of signalg”, an expression languagg, for expressing guards, and an action
language’,, for expressing effects. The languages are discussed iiloB&ch.

Definition 2. A transitionover a given state hierarchy is a tuple= (s, e, g,a,5’) €
(X\ Xfinat) x (BEU{T}) x L, x L, x 2% such that there exists a regione R for
which S’ is a maximal consistent subsetd@fscendants(r) ands € descendants(r),
and if s € Yinitiar U Xehoice thene = 7. We definesource(t) = s, trigger(t) = e,
guard(t) = g, effect(t) = a, targets(t) = S’, and container(t) = r.

In the graphical UML notation, a transition is shown as amwarfrom the source
state to the main target state. A transition has a text ladele trigger [guard] /effect
Any of the four parts may be omitted.

A transitiont has a source stateurce(t) and a set of target statesrgets(¢). In
the simple casegargets(t) is a singleton set, but if the main target is a composite state
then we assume thatrgets(t) also contains the initial states entered by the transition.
For examplegsource(t4) = B in Fig. 1, targets(t4) = {F1}, source(t9) = Main, and
targets(t1) = {Main, 11,12}. The intuition behindontainer(t) is that it is the smallest
region containing all the states exited or entered by thesitian.

A transition can be fired only if an occurrence of its triggerevent is dispatched.
The triggertrigger(t) is a signal name if the transition is triggered by the receptf
a signal, or the special symbpoif the transition is a completion transition. The symbol
7 is omitted in diagrams. A transition also has an associategidyuard(t), which
defaults totrue if it is omitted. The guard is a side-effect free Boolean egsion
giving a precondition for firing the transition. A transitienay have an effeatffect(t)
that is executed upon firing the transition. The defaultafieto do nothing.

If an event occurrence is dispatched but it does not caustramsitions to be fired,
the event can bdeferredand dispatched again later. This happens if the event ig-desi
nated deferrable by one of the active states. Thus, we defirapingdeferrable from
states to subsets of the set of signals

Definition 3. A UML state machines a tuple(H, @, deferrable), whereH is a state
hierarchy,® is a set of transitions ove#l, and deferrable : X — 2F.

3.3 State Configurations

A completion transition is triggered by an implicit comptet event that is generated
when the source state finishes all internal activity. For @udsstate or simple state,
this happens (in our UML subset) immediately when the statoimes active. For a
composite state, a completion event is generated whengdine have reached their
final states.

Instead of maintaining a queue of completion transitions,associate equivalent
information with each active state. We mark an active dtatgyif a completion event
for the state has not yet been dispatched. An active stqtedsceniffitis not busy, i.e.,
iff a completion event has been dispatched without firing@mypletion transitions.

Definition 4. A state configuratioover a state hierarchy is a paif4, @), where the
set of active stategl is a maximal consistent subset Bfand Q C A is the set of
quiescent states.

A busy state iscompletedif, conceptually, a completion event for the state has
been generated but not yet dispatched. Thus, a busy statenjgeted iff it is a non-
composite state, or a composite state whose active subatatall quiescent final states.

Definition 5. The set ofcompletedstates in a state configuratiati = (A, Q) is
completed(C') = {s € A\ Q| descendants(s) N A C Xfna N Q}.

When a composite statebecomes active during execution, it is first busy and not
completed. If all regions of the state reach their final statieenc becomes busy and
completed and, conceptually, a completion event is geagrétffter that, it is possible
to either (i) fire a completion transition whose source &d whose guard isue , or,
if there is no such transition, (ii) consume the completiearg and make quiescent.

If ¢ has become quiescent, no completion transitions fromill be fired because the
completion event has already been consumed. This behaniitisfthe requirement of

UML that the guards of completion transitions leaving aestaie evaluated only once
after the state has become completed.

If ¢ above is replaced by a non-composite statbe behavior is similar except that
the phase of being busy and not completed is skipped.

The initial state configuration of a state machiné{is}, {}), wheres € X;,tia
andparent(s) = top. The model is ill-formed unless there is exactly one stich

3.4 Transition Firing Dynamics

In general, a UML state machine instance moves from a stafigtwation to another
by firing a maximal conflict-free set of enabled transitiodewever, we have cho-
sen to make the restriction, as discussed in Sect. 3.1, ttfadgonal regions may
not contain transitions triggered with the same signalntadly, if ¢1,t2 € & and
trigger(t1) = trigger(ta) # 7, then—(source(t1) L source(ts)). It follows that
the maximal conflict-free set contains at most one tramsitio

A transitiont is enabledby an event occurrence iff the event matches the trigger of
t, the source state ofis active, and the guard okevaluates torue . If an enabled tran-
sitiont is fired, the resulting state configuration is obtained by famovingsource(t)
and any other descendant stateg®@ftainer(t) from the sets of active states and qui-
escent states, and then addiagyets(t) to active states. Nothing is added to the set of
quiescent states because all new active states are busy.

Definition 6. LetC' = (A, Q) be a state configuration and lete & be a transition
such thatsource(t) € A. Thenext state configuratiomssociated witlt andC is

nextstateconf(t,C) = ((A\ S) U targets(t),Q \ S),
whereS = descendants(container(t)).

A completion transition is enabled iff its source state igvag busy, and completed,
and the guard condition is true. If there is an active, busg, @@mpleted state that
is not the source state of any enabled completion transitiensay that ajuiescing
stepQUIESCHs) is enabled. The only effect of firing the quiescing step is ke
quiescent, which corresponds to implicit consumption efecbmpletion event fos. If
there are any enabled completion transitions or quiesdemssone of them is chosen
nondeterministically for firing and (according to UML) onlythere are none, signal-
triggered transitions are considered.

Given a state configuration and an event occurrence, it isilpleshat several tran-
sitions are enabled. However, some of these are ruled oetlbars UML semantics,
which states that transitions deeper in the hierarchy heeeity. Priority also applies
to deferral of events, but not to completion transitionsduse no busy, completed state
can be a descendant of another one.

Definition 7. LetT be the set of transitions enabled by an eveinta state configura-
tion (A, Q) and letS = {source(t') | ' € T} U{s € A | e € deferrable(s)}. The set
of prioritizedtransitions is

prioritized (T, A) = {t € T | descendants(source(t)) NS = 0}.

Becaused is a consistent set of active states and the restrictioniggetrs in orthog-
onal regions holds, evettyc prioritized (T, A) has in fact the same source state. One
transition in the set is chosen nondeterministically fangjr

3.5 Action Language

In our subset of UML state machines, an action language i insivo roles, namely
to specify the guard constraints and the effects of trassti

The choice of an action language is connected to the levalgbart for various
UML model elements. The minimal level is to allow sendingnsily to objects. Our
action language supports more than this, e.qg. attributebjetts and dynamic creation
of new objects. The action language supported by our PROMiEd#slation is a subset
of the Jumbala action language [10]. Jumbala is an objeéetiad language that could
be characterized as simplified Java tailored to the UML fraark. The language is
strongly typed withint (32-bit signed integer) andoolean primitive types and
object reference types.

In state machines, the effects of transitions are lists nfohla statements, and the
transition guards arkoolean expressions. Below is a list of the kinds of statements
supported by the PROMELA translation. The syntax and seicgfuilow the conven-
tions of the Java programming language, with an adsgd statement.

— Assignments of the formhs=rhs; ".

— If statements of the formif (condition) { truestmt} else { falsestmt}’,
whereconditionis aboolean expression. Thelse part may be omitted.

— Iteration statements of the forrwhile (condition) { stmt} .

— Send statements of the foreend signalnamé paramvaluey to object *. A
send statement places a signal ewgrnalnameén the input queue afbject Values
for signal parameters are given as a comma-separated list.

— Assertions of the formdssert conditiorn .

The following kinds of Jumbala expressions are supportetbd we assume that
obj is the object in whose context the guard or action is evatuate

— 32-bit decimal integer literals.

— Theboolean literalstrue andfalse

— The expressiothis , which is a reference tab;.

— Names of the fornidentifieror identifier.identifier A name can resolve to either an
object reachable fromb; by following links (association instances), or an attréaut

— Infix expressions of the forreftexpr op rightexprThe binary operatoop can be
oneof+,-,*,/,%&",|,> <, >= <= == 1=, <<, or>>. The semantics of
operators is the same as in PROMELA.

— Instance creation expressions of the farew classnam@ . The state machine of
the newly created object begins executing automatically.

3.6 Execution of Models

At a given moment in time, the system is in a state that, as deyleonforms to the
UML model. We call this state thglobal configuratiorof the system. A global con-
figuration consists of a set of objects, where each ohjéftcontains the following
information.

while true:

agprpwNhE

pick an objeciob;
(A, Q) := obj.stateconf
sources := completed (obj.stateconf)
compl := {t € @ | source(t) € sources A trigger(t) = T A evalguard(obj, t, ()}
enabled := compl U{QUIESCK3s) | s € sources A At € compl such thats = source(t)}
if enabled # :
if enabled N Ppseudostate # 0:
enabled := enabled N Ppseudostate
pickt € enabled
if t = QUIESCHs) for somes:
obj.stateconf := (A, QU {s})
else
executeeffect (t) in the contextobj
obj.stateconf := nextstateconf (t, obj.statecony)
else if obj.inputqueue is not empty:
remove the first elemere, params) from obj.inputqueuve
enabled := {t € @ | source(t) € A A trigger(t) = e A evalguard(obj,t, params)}
if prioritized(enabled, A) # 0:
pick t € prioritized(enabled, A)
assign(obj,t, params)
executeeffect(t) in the contextobj
obj.stateconf := nextstateconf (t, obj.stateconf)
pushobj.deferredqueue in front of obj.inputqueue
obj.deferredqueue := empty
else if3s € A such thak € deferrable(s):
append(e, params) to obj.deferredqueuve

Fig. 2. Execution Algorithm for UML Models

The values of the instance attributes6f.

The links that are navigable frood;, pointing to other objects.

The state configuration of the state machinelgf denotedbj.stateconf.
The input queue afbj, which we denote bybj.inputqueue.

The deferred queue obj, denotedbj . deferredqueue.

The last two elements are FIFO queues whose elements asteigmt occurrences

represented as paifs, params), wheree € F is a signal name angurams is a tuple
of signal parameter values.

The algorithm in Fig. 2 illustrates the execution of a motiebne step of execution,

one object is nondeterministically chosen. If any completiransitions or quiescing
steps are enabled, then one of them is fired. Otherwise, am eseurrence is removed
from the input queue and a prioritized enabled transitidirésl. If no such transition
exists and the event is not deferrable, the event occuriisrioglicitly consumed. In
transition selection, transitions whose source state imi#ial or choice pseudostate
(the setdcudostate) are preferred to other completion transitions.

In order to handle signal parameters, the algorithm usedoll@ving auxiliary

procedures.

— assign(obj, t, params) modifies the global configuration by assigning the values
in the tupleparams to the instance attributes ebj. The attributes receiving the
new values are named in the trigger of the transition

— evalguard(obj, t, params) evaluatesguard(t) in the context of objecbb;j. The
values ofparams are assigned as iissign(obj, t, params) had been executed,
for the duration of guard evaluation. After evaluation, tréginal attributes are
restored and a truth value is returned.

The execution algorithm is such that in one step a singlesitian in any object
is fired, and in the next step a transition in another objeghtibe fired. We call this
transition segment granularibAlternatively, it would be relatively straightforward to
modify the algorithm to useompound transition granularityso that one step of execu-
tion would correspond to a compound transition, i.e. a segeef transition segments
with only pseudostates between them. A third possibilityilddie run-to-completion
granularity, where the firing of a signal-triggered transition in an @bje followed by
as many completion transitions or quiescing steps as fgessithe same object before
executing transitions in other objects.

4 Translation to PROMELA

This section presents our main contribution, the trarmtats PROMELA. It translates
the active classes and their state machines to corresppREBEOMELA processes, and
uses the deployment diagram to infer the initially activ@eots and how their associa-
tions to other active objects are set. The resulting PROMLdgram can be checked
for deadlocks or assertion violations in the model. If aroers found, the error trace
can be simulated in the UML model by using a separate modeilator.

Our translation requires the user to supply informationulioe model that is oth-
erwise hard to infer: (i) the size of the input and deferredugs ¢sizE), and (ii) the
maximum number of instances of a each clasaXIDs). It is relatively easy to aug-
ment the PROMELA translation to check whether these limigsexceeded, and give
an error requesting the user to increase them if this happens

4.1 SPIN and PROMELA: Brief Introduction

PROMELA (PROcess MEta LAnguage) is the input language ofttioé SPIN [1]
initially developed in Bell Labs by Gerard Holzmann et alellanguage allows for the
dynamic creation of processes and both synchronous (reodggzand asynchronous
communication through communication channels.

The PROMELA language is rather rich, however our transtatioes not need
most of the features. The elements that we use are brieflgptiexs. The queue (asyn-
chronous channel) operations are as follows. The send coohgiel,...,vn appends
the queud with the message comprised of the valwés..vn. Similarly, the receive
commandy?vl,...,vn reads the first message from the queue (or blocks if the qeseue i
empty). A central part of our translation is the . fi compound statement that can for
instance be as follows:

#define MAXIDS 2
int class1_myPeer[MAXIDS];

aclassl int class1_pid = 0;
init {
atomic {
classl_myPeer[0] = 1;
myPeer run class1(0); /* Start active object a */
classl_pid = class1._pid + 1;
myPee classl_myPeer[1] = 0;
b:classl run class1(1); /* Start active object b */

classl pid = classl pid + 1;
}
}

Fig. 3. An initial configuration and its PROMELA translation.

if

t(a==1)->a=a+1,

T(@a==0)->a=1;

relse->a=0;
fi
The statement above defines a simple selection construtthwie option sequences,
each starting with a double-colon. Each option sequences st&h a guard (in our ex-
ample, the first guard i& == 1)). This guard must evaluate to true so that this option
sequence can be executed. If several guards evaluate tthieneone of them is chosen
nondeterministically and the associated commands areiedcTheelse sequence (if
present) is chosen iff the guards of every other sequendeatgdo false.

Normally, the scheduled object in SPIN can change after eastmand. However,

if this is not desired, it can be prevented by enclosing sgvammands inside an
atomic block (with the keywordtomic). We also use this feature.

4.2 Global Variables and Initialization Block

The global variables of the PROMELA specification are theutrqueues and deferred
queues for each class. These are arrays witkiDS slots. The associations for each
class are also stored in a similar table. Finally, for eadlssIthere is an integer that
stores the process number of the last created instancetafisa.

The initialization of the active processes (the structditbe PROMELAInit block)
is as follows. Each active object (declared in the deployrd@gram) is processed in
turn. First, its associations are configured by setting #ieas in the global association
table and then the object is started with the comnrandwith its process id as the argu-
ment. In order to maintain scheduling in timt-process, these commands are enclosed
inside an atomic block. For instance, the left-hand side@f¥Fshows a deployment di-
agram describing an initial configuration of a model. It hag bbjects, a and b, that are
instances of the active class “class1” and the initial@agiof the association “myPeer”
from “class1” to itself. The right hand-side of Fig. 3 givéetPROMELA translation
of the diagram.

4.3 Translation of State Machines

Figure 5 gives a skeletal translation of the state machiégnl. Each class is trans-
lated to a PROMELA process (aoctype declaration, like line 4 in Fig. 5). This pro-
cess has one argument, the instance number of the creatad. dije first instance gets
the number zero and the maximum number of instances is useifisg. The instance
attributes of the class and integer variables encoding téte sonfiguration of each
region in state machine of the class are declared first.

The main loop encoding the state machine is divided into tarxspevalcom-
pletions andevaltriggers for completion and signal-triggered transitions, respebt
(lines 11 and 34 in Fig. 5). This division is due to the factttaacording to UML
semantics, completion transitions have priority over algriggered transitions. There-
fore the PROMELA code follows the following idea. First, ftempletion transitions
as long as possible. Then, consume a signal event from thm: @ueue (or wait until
the queue becomes non-empty), fire a signal-triggereditiamsand go back to trying
to fire completion transitions.

In order to handle completion transitions correctly withactually generating com-
pletion events and having a queue (with priority over themadrsignal event queue) for
them, we use the concept of busy and quiescent states ioddn Sect. 3.3. That
is, for each simple and composite state that has outgoingletion transitions, we
have two possible values in the PROMELA state vector (&.§op_Main_busy and
s_Top_Main in the code in Fig. 5). Completion transitions are only eagdd if the
state is marked busy. As pseudostates only have outgoingletion transitions, there
is no need for such additional information for them.

The general structure for the block evaluating whether aptetion transition can
be fired is fairly simple as there is no need to take the trimmsjtriority caused by
the hierarchy into account. In order to first fire completimansitions leaving from a
pseudostate, the block consists of two consecutive, gsirsild-blocks: the first only
considers pseudostates (lines 12—-21 in Fig. 5) while thersk¢lines 22-33) takes
care of the simple and composite states. Both sub-blockpisréargeif. . . fi blocks
with one option sequence for each (pseudo)state with cuggmmpletion transitions.
Each option sequence first checks whether the (pseudojsigtestion is active (and
busy and completed if it is a simple or composite state), had hon-deterministically
chooses a completion transition whose guard is true. Ietes no such completion
transition, then (i) a quiescing step is taken if the state simple or composite, or (ii)
following UML specifications, an error is reported if thetstavas a pseudostate.

The code for signal-triggered transitions (lines 35-5&jtstwith a consumption of
a signal event from the queue, or non-deterministic geiweraf an external signal if
the state configuration is in a state that can consume annektsignal event® The
general structure for evaluating whether a signal-triggdransition can be fired is a
largeif. . .fi block (lines 40-57) with one option sequence for each statihe top
level state machine. The guards for the option sequencesmapdy checks of whether
a particular state is active. The option sequence then dispem whether the state is

5 An externalsignal is a signal with no parameters and whose name stahsai-sign. It can
be non-deterministically generated by the environmenhefWUML model. Such signals are
convenient when modeling open or underspecified systems.

simple or composite. If the stateis composite, a nesteil . . fi block follows (for
example lines 42-50 in Fig. 5), this time containing an aptequence for all the
children ofs. After this (possibly empty) block, a subsequint. fi block evaluates for
each outgoing signal-triggered transition whether (i)ttigger matches the consumed
signal event, and (ii) the guard evaluates to true.

In both blocks described above, the code for firing a tramsiis similar. The en-
coding of the effect of the transition (a sequence of Jumbiements) is presented
in detail in Sect. 4.4. The translation of each transitiofingshed with PROMELA
code that sets the new active state to be the target state thtisition. For composite
states, we also have to set its regions to their initial stafehe target state has outgo-
ing completion transitions, then the state is marked buftgrahis, the control flow is
transferred to the beginning of the block evaluating cotiquetransitions.

4.4 Translation of Action Language

The supported constructs are presented in Section 3.5. Wewdescribe their trans-
lation to PROMELA. The translation of simple assignmentsimple, both variable
declarations and assignments are syntactically similBROMELA and Jumbala.

Queue operations are used to send messages to active tgaeaé an object or
to read messages from its input queue. In order to manageitagrdc creation of new
instances we store the associations of objects as well asrtpat queues in a global
array. Each entry in an array of a particular associatiomignatance number. Thus
sending a message along an association requires accdssiagray with the instance
number of the process to obtain the target object. The messdigen sent to the input
queue of this object.

New objects are created as follows. There is a global varidiait is one greater than
the instance number of the last created instance. This numbeed to set the associa-
tions of the new object (entries in the global arrays). Thenappropriat@roctype is
called with the instance number. Finally, this number iséngented.

We also support thé. .. else if structure of Jumbala by simulating this with the
PROMELA if...fi structure. The constructs are different in that in Jumbihle,ex-
ecuted branch is the first one where the guard evaluatesdoltrttPROMELA, any
branch whose guard evaluates to true can be chosen. Houlgges, easy to simulate
by introducing Boolean flags that guarantee that if a pderoguard evaluates to true,
then all the preceding guards evaluate to false. Whige statement is translated to a
PROMELAdOo. .. od structure. This translation is straightforward.

Finally, it should be noted that the code in Fig. 5 does notieately model schedul-
ing of objects. Indeed, if this code were a part of a largecoorent system, the system
would have too many behaviors since SPIN could change thedsédd object in the
middle of the execution of a UML transition. This omissioririgentional due to lack of
space and the fact that UML semantics does not define schgdudiicy (see discus-
sion at the end of Sect. 3.6). One can for instance allow agcobj fire only a single
transition or fire completion transitions until a stable figuration is reached. Both
of these scheduling policies (and others) can be implerdemseng the PROMELA
atomic statement.

$tick[x>0]/x=x—1;

/x=10;a=false; Ja=true:
o ———» . - ’
Init ; ;

e

@~()
$tick[x<10]
$tick[x>0]/x=x—1; . e /a=true;

Fig. 4. The flattened version of the state machine in Fig. 1.

[(x==0)]
[x==0]

@®F

4.5 Flat State Machines

An interesting idea is to consider the case where UML statehinas are flattened.
Intuitively this means that hierarchical states are regdaegith several simple states so
that the behavior of the system is the same, Fig. 4 shows ttienftal version of the
state machine in Fig. 1. For flat state machines, we propasaslation where the state
vector of SPIN is made shorter by removing the variablesregdhe component states.
Instead, the PROMELA code has a label for each state of therfled machine which
is followed by arnif . . . fi block for its outgoing transitions. If a transition is firemhntrol
flow is set to the transition’s target state by usingp#o statement to the corresponding
label. Whether or not this added simplicity compensatespthtential blowup in the
state machine and PROMELA code sizes is a question we hate geswer.

5 Evaluation

We have implemented our translation in a tool caktebco®. Its input parameters are
the UML (version 1.4) model in the XMI format supported by tBeral tool [11], the
maximum number of active instances of a class, and the sitteedhput and deferred
queues. The outputis a PROMELA model.

We have tested the tool with several simple models. One ai thedels a protocol
consisting of an environment and two protocol entities, radee and a receiver. The
environment initiates a session, after which the protocdities shake hands. After
the handshake, the protocol is running and the sender fdeagata signals from the
environment to the receiver. Our initial model contains adleck: the first data signal
may reach the sender before the handshaking is completéhandta is lost. This can
be fixed by simply deferring the data signal in the state whegesender is waiting for
the handshakeRrocois able to detect the deadlock and it is possible to simulate t
corresponding trace.

We have also applieerRocoto a simplified model received from an industrial part-
ner. The model portrays a client-server architecture atbstract level, using 4 active
classes and a total of 33 state machine st@rscoand SPIN find a deadlock in the
model, or prove the absence of a deadlock if the model is nsaflifih fractions of a
second, regardless of whether the model is flattened or not.

6 available ahttp://www.tcs.hut.filSMUML/

To better assess the scalability of the approach, we nedataindarger models in
XMI format and run experiments with them. We expect some eflily challenges to
be the handling of data and polymorphism. Our tool does nweatly support general-
ization of classes, and there are no arrays or passive slegsesenting data structures.
Another possible issue is the efficient handling of advaista# machine concepts such
as history states.

6 Conclusions

This paper outlines an approach to model check UML state mashAlthough using
SPIN as a back-end model checker has been tried before, okidiffers from previous
work in that it focuses on a UML subset for protocol models. &i&o support more
action language features than some other previous work.

In the near future we plan to conduct case studies to evatuatapproach. We are
especially interested in evaluating whether flatteningtafesmachines can help anal-
ysis, and how PROMELA translations should be designed tease the efficiency of
partial order reductions. We also wish to investigate wietihe subclassing mechanism
of our action language can be used to support data abstractio

AcknowledgementsThis work has been financially supported by Tekes, Nokia,-Con
formiq, Mipro, the Academy of Finland, and the Emil Aaltoriéoundation.

References

1. Holzmann, G.J.: The Spin Model Checker. Addison Wes|&p42

2. Latella, D., Majzik, I., Massink, M.: Automatic verifidah of a behavioural subset of UML
statechart diagrams using the SPIN model-checker. Forsmg&s of Computingl (1999)
637-664

3. Mikk, E.: Semantics and Verification of Statecharts. PhBsts, Christian-Albrechts-

Universitat (2000)
4. Porres, |.: Modeling and Analyzing Software Behavior iMU PhD thesis Abo Akademi
(2001)

5. Knapp, A., Merz, S.: Model checking and code generationJWIL state machines and
collaborations. In: 5th Workshop on Tools for System Desigd Verification. Report 2002-
11, Reisensburg, Germany, Institut fur Informatik, Umgit Augsburg (2002)

6. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using 8IRb generate tests from ASM spec-
ifications. In: Abstract State Machines. Number 2589 in LNSfringer-Verlag (2003)

7. Ober, I., Graf, S., Ober, |.: Validation of UML models vianeapping to communicating
extended timed automata. In: 11th International SPIN Wuaokson Model Checking of
Software, 2004. Volume LNCS 2989. (2004)

8. Schingz, I., Toben, T., Mrugalla, C., Westphal, B.: The pdwy UML verification environ-
ment. In: SEFM, IEEE Computer Society (2004) 174-183

9. Telelogic: Telelogic Tau G2 v2.7 (2006) Softwalnétp://www.telelogic.com/

10. Dubrovin, J.: Jumbala — an action language for UML statehlimes. Research Report
A101, Helsinki University of Technology, Lab. for Theomel Computer Science (2006)

11. Alanen, M., Porres, I.: Coral: A metamodel kernel fons@rmation engines. In: Proc. Sec-
ond European Workshop on Model Driven Architecture (MDAurhber 17-04 in Tech. Re-
port, Computing Laboratory, Univ. of Kent (2004) 165-170

[* constant definitions for all states, signals etc. */
#define s_Top_Init 0

proctype M(int proc.id) {
5:

10:

15:

20:

25:

30:

35:

40:

45:

50:

55:

byte state_Top = s_Top_-Init;

byte state_Top_Main_R1 = s_Top_Main_R1_None;

byte state_Top_Main_R2 = s_Top_Main_R2_None;

byte x; bool a; /* Instance attributes of the owning class */
byte trigger, p1, ...; /* for signal type & parameters */

Xr inputqueues[proc_id];

evalcompletions:
if /* Try to fire completion transitions from pseudostates */
:: (state_Top == s_Top.Init) ->
x = 10; a = false; state_Top = s_Top-Main_busy; state_Top_-Main_R1 = s_Top_Main_R1._Init;
state_Top_Main_R2 = s_Top_Main_R2_Init; goto evalcompletions;
i (state_Top_Main_R1 == s_Top_Main_R1_Init) ->
state_Top_Main_R1 = s_Top_Main_R1_A; goto evalcompletions;
. (state_Top_Main_R2 == s_Top_Main_R2_Init) ->
state_Top_Main_R2 = s_Top_Main_R2_Loop; goto evalcompletions;
:: else -> skip;
fi
if /* Try to fire completion transitions from real states */
:: (state_Top-Main_R1 == s_Top_-Main_R1_B_busy) ->
a = true; state_Top_Main_R1 = s_Top_Main_R1_Final; goto evalcompletions;
. (state_Top = s_Top_Main_busy && state_Top_-Main_R1 == s_Top_Main_R1_final &&
state_Top_Main_R2 == s_Top_Main_R2_final) ->
if
i1 (x == 0) -> state_Top = s_Top_Final; state_Top_-Main_R1 == s_Top_Main_R1_None;
state_Top-Main_R2 == s_Top-Main_R2_None; goto evalcompletions;
. else -> state_Top = s_Top_Main; goto evalcompletions; /* Quiescing step */
fi
:: else -> skip; /* No completion transition was enabled */
fi
evaltriggers:
if
:: inputqueues[proc.id]?trigger,p1; /* Consume signal event (if any) */
/* Non-deterministically create an external signal if in a state that can consume it */
. (state_Top-Main_R1 == s_Top_-Main_R1_Loop) -> trigger = signal_$tick;
fi
if
:: (state_Top == s_Top_Main_busy || state_Top == s_Top_Main) ->
if
:: (state_Top-Main_R1 == s_Top_Main_R1_A && trigger == signal_e && true) ->
state_Top-Main_R1 = s_Top_-Main_R1_B_busy; goto evalcompletions;
;1 (state_Top_Main_R2 == s_Top_Main_R2_Loop && trigger == signal_$tick && x > 0) ->
X =X - 1; goto evalcompletions;
. (state_Top-Main_R2 == s_Top_Main_R2_Loop && trigger == signal_$tick && x < 10) ->
state_Top-Main_R2 == s_Top_-Main_R2_Final -> goto evalcompletions;
i else -> skip
fi
if /* Signal was not consumed by any substate of Main */
:: (trigger == signal_e && a == true) -> state_-Top_-Main_R1 = s_Top_-Main_R1_None;

state_Top-Main_R2 = s_Top_Main_R2_None; state_Top = s_Top_Failure; goto evalcompletions;

:: else -> skip
fi
:: else -> skip;
fi
goto evaltriggers; /* implicit consumption occurred */

Fig. 5. PROMELA code of running example.

