
Model Checking Dynamic and Hierarchical
UML State Machines

Toni Jussila1, Jori Dubrovin2, Tommi Junttila2, Timo Latvala3, and Ivan Porres4

1 Johannes Kepler Universität Linz
2 Helsinki University of Technology

3 University of Illinois at Urbana-Champaign
4 Åbo Akademi University

Abstract. This paper presents a technique to model check UML specifications
by translating UML models to the model checker SPIN. Our models consist of ac-
tive UML classes, whose behavior is defined by hierarchical state machines. The
intended application is to find errors in protocols communicating using asyn-
chronous message passing. Compared to previous efforts using a similar ap-
proach, our novel points are the following. First, we consider a subset of UML
that in our opinion is expressive enough for protocol modelsbut allows a simpler
translation to SPIN than existing work. Preliminary analysis of simple industrial
models support our conclusions on the expressivity of our UML subset. Second,
we present a powerful action language that is still amenableto automatic analysis.
The action language is used to specify the effects of transitions, which may in-
clude dynamic creation of new objects. Finally, we discuss an even simpler SPIN
translation for flattened UML state machines and compare it to the translation
that supports hierarchy.

1 Introduction

Model-based approaches for system design have been studiedfor a long time. Ad-
vantages associated with model-based approaches are several. Models give designs a
restricted implementation independence, and they also provide a convenient form of
documentation. However, arguably the most important benefit is that the level of ab-
straction of the design is raised. This has many implications. Abstract models allow
efficient communication of the design, since unnecessary details are hidden. They also
facilitate testing and verification of the design at an earlystage, the topic of this paper.
The widely acknowledged benefit of this is that it is much cheaper to detect and correct
software errors early in the design process.

We report preliminary results from a project, where the goalis to find errors in pro-
tocol designs usingmodel checking. In our approach, the protocols are modeled using
UML class diagrams and state machines. The Unified Modeling Language (UML) is a
standardized graphical notation for modeling and documenting object-oriented software
and business processes. UML is also the most widespread software modeling language,
and it is accepted in the industry as the standard language for software analysis and
design. UML state machine models can fairly naturally capture protocol designs, where

the communication is asynchronous and data can be abstracted with the class subtyping
mechanism.

Our approach to model checking UML designs is based on using the state-of-the-
art model checking tool, SPIN [1]. Models with assert specifications are automatically
translated to SPIN’s input language, and counterexamples can be simulated. More ad-
vanced properties can be specified in the SPIN model as temporal logic formulae.

Our work improves or differs from previous work in the following ways. The subset
of UML we support has specifically been chosen to be expressive enough for our in-
tended application, modelling protocols, yet it allows a precise and fairly simple formal
semantics. We present an action language, which is used to specify effects of transi-
tions, that is powerful and amenable to automatic analysis.Supported features include
dynamic creation of objects, the usual flow constructs, and arithmetic expressions. We
also discuss a simpler SPIN translation for flattened state machines and compare it to
the translation that supports hierarchy.

2 Related Work

The idea of applying model checking on UML-type state machine models is not new.
Latella et al. [2] present a translation from UML state machines to PROMELA, the in-
put language of SPIN. They only allow a model to contain a single state machine. In
another translation by Mikk [3], the input language is not UML but statecharts, which
is a similar formalism with different semantics. Perhaps the closest work to ours is [4]
which presents a tool called vUML that translates UML to PROMELA. vUML supports
a larger subset of UML than our approach. This, however, has the effect that the trans-
lation of a UML state machine is more complex; it requires a code block that chooses
the transitions to be fired and another block that models the effects of transitions. All
these works have the limitation that no data attributes can be associated with objects or
state machines. Consequently, there is no action language,and the only possible effect
of a transition is to send signals with no parameters.

The Hugo project [5] also supports SPIN as a back-end to verify UML models.
Their initial PROMELA translation was only feasible for very small models, and the
current version of the tool follows ideas similar to those invUML. To our knowledge,
the translation is undocumented. In [6], SPIN is used to generate test cases from abstract
state machines. The OMEGA project [7] has created a tool set focusing on real-time
properties. Their approach is based on translating UML to the IF intermediate language
that has several model checking back ends. The Rhapsody UML verification environ-
ment [8] supports model checking of UML state machines by translating the models
to the input language of the VIS symbolic model checker. MostUML constructs are
supported, and the action language is a restricted subset ofC++. Features that are not
supported include deferred events and do activities.

3 UML Subset and Semantics

In our framework, a UML model contains classes, state machines, and deployment dia-
grams. Classes may contain instance attributes, i.e. data values associated with objects,

and there may be associations between classes. Operation calls are not supported. Also,
a class cannot be a subtype of another class, but we are planning to incorporate support
for subtype relationships. We assume that all classes are active classes whose behavior
is defined by behavioral state machines, discussed below. Atrun-time, objects com-
municate with each other asynchronously using signals. Signals may have associated
parameter values. A deployment diagram is used to specify the initial configuration of
objects.

3.1 A Well-Defined UML State Machine Language

Compared to standard UML state machines, we consider a subset. This is motivated by
the need of a precise behavioral design language that can be verified efficiently.

UML offers two mechanisms for modeling concurrency: activeobjects communi-
cating with signals, and orthogonal regions in the state machine of an object. We argue
that the first approach is often preferable in an object oriented setting, where it is more
natural to put emphasis on communicating objects (which canbe dynamically created)
instead of concurrent behavior within a single object. Indeed, the commercial UML tool
Telelogic Tau [9] does not even allow orthogonal regions in state machines.

Our subset allows orthogonality, but we propose a restriction that no two transitions
in orthogonal regions can be enabled by the same event. We argue that this violates the
idea of orthogonality and creates complicated dependencies that are hard to understand
and analyze. Together with execution semantics in which at most one completion tran-
sition (transition without an explicit trigger) is fired at atime, the restriction guarantees
that at most one region changes its state in each step. This corresponds to interleav-
ing execution semantics suitable for the SPIN model checker, and results in a simple
implementation of the transition selection algorithm.

UML allows continuous do activities in states, but we omit them because the model
checker executes models in discrete steps. Furthermore, wedo not currently support
history pseudostates, fork or join pseudostates, or entry or exit activities in states. These
are advanced modeling concepts that could later be incorporated to our framework.

In the following, the structure of state machines is formalized.

3.2 Structure of State Machines

A state machine containsstatesandtransitionsbetween them. Acomposite statecon-
tains one or more orthogonalregions, which in turn contain substates. During execution,
one or more states areactive. If a composite state is active, then exactly one direct sub-
state in each region is active. Whenever a substate is active, its containing composite
state is also active.

Let Σ be a finite set of states consisting of simple statesΣsimple , initial pseu-
dostatesΣinitial , choice pseudostatesΣchoice , final statesΣfinal , and composite states
Σcomposite , and letR be a finite set of regions. We define achild relation↘ such that
if a regionr of a composite statec directly contains a states, thenc ↘ r andr ↘ s.

Definition 1. A tupleH = 〈Σsimple , Σinitial , Σchoice , Σfinal , Σcomposite ,R, top,↘〉
is astate hierarchyiff ↘⊆ Σcomposite ×R∪R×Σ, and〈Σ ∪R,↘〉 is a tree rooted
at top ∈ R such that the set of leaves of the tree isΣ \ Σcomposite .

Failure

A B

Loop

$tick[x<10]

$tick[x>0]/x=x−1;

F2

e t4: /a=true;

F1

I2

I1

t9: e[a==true]

Main

t1: /x=10;

a=false;

[x==0]

Fig. 1. Running example.

The inverse relation of↘ is the functionparent : Σ∪R\{top} → Σcomposite∪R,
giving the parent region of a state or the parent composite state of a non-top region.
Thus, the direct substates of a composite statec are the statess such thatparent2(s) =
c. The set of proper descendants of a state or regionv is defined bydescendants(v) =
{v′ ∈ Σ ∪R | v ↘+ v′}, where↘+ denotes the irreflexive transitive closure of↘.

Two statess1, s2 ∈ Σ areorthogonal, denoteds1 ⊥ s2, iff there are regionsr1, r2 ∈
R such thatr1 6= r2, parent(r1) = parent(r2), s1 ∈ descendants(r1), ands2 ∈
descendants(r2). A setS ⊆ Σ is consistentiff for any two distinct statess1, s2 ∈ S

eithers1 ⊥ s2, s1 ∈ descendants(s2), or s2 ∈ descendants(s1). In particular, the set
of active states in a state machine is always a maximal consistent set, i.e. a consistent
set that is not a proper subset of any other consistent set.

Consider the state machine diagram shown in Fig. 1. States A and Loop are orthog-
onal, thus they can be active at the same time. In this situation, the entire set of active
states would be{Main, A, Loop}. Notice that regions are not explicitly drawn in dia-
grams. Instead, the regions of a composite state are separated by a dashed line, and the
top region contains the entire diagram.

A state machine transition is defined as follows. First, we assume the existence of a
finite set of signalsE, an expression languageLg for expressing guards, and an action
languageLa for expressing effects. The languages are discussed in Section 3.5.

Definition 2. A transitionover a given state hierarchy is a tuplet = 〈s, e, g, a, S′〉 ∈
(Σ \ Σfinal) × (E ∪ {τ}) × Lg × La × 2Σ such that there exists a regionr ∈ R for
whichS′ is a maximal consistent subset ofdescendants(r) ands ∈ descendants(r),
and if s ∈ Σinitial ∪ Σchoice thene = τ . We definesource(t) = s, trigger (t) = e,
guard(t) = g, effect(t) = a, targets(t) = S′, andcontainer (t) = r.

In the graphical UML notation, a transition is shown as an arrow from the source
state to the main target state. A transition has a text labelname: trigger [guard] /effect.
Any of the four parts may be omitted.

A transitiont has a source statesource(t) and a set of target statestargets(t). In
the simple case,targets(t) is a singleton set, but if the main target is a composite state,
then we assume thattargets(t) also contains the initial states entered by the transition.
For example,source(t4) = B in Fig. 1, targets(t4) = {F1}, source(t9) = Main, and
targets(t1) = {Main, I1, I2}. The intuition behindcontainer(t) is that it is the smallest
region containing all the states exited or entered by the transition.

A transition can be fired only if an occurrence of its triggering event is dispatched.
The triggertrigger (t) is a signal name if the transition is triggered by the reception of
a signal, or the special symbolτ if the transition is a completion transition. The symbol
τ is omitted in diagrams. A transition also has an associated guardguard(t), which
defaults totrue if it is omitted. The guard is a side-effect free Boolean expression
giving a precondition for firing the transition. A transition may have an effecteffect(t)
that is executed upon firing the transition. The default effect is to do nothing.

If an event occurrence is dispatched but it does not cause anytransitions to be fired,
the event can bedeferredand dispatched again later. This happens if the event is desig-
nated deferrable by one of the active states. Thus, we define amappingdeferrable from
states to subsets of the set of signalsE.

Definition 3. A UML state machineis a tuple〈H, Φ, deferrable〉, whereH is a state
hierarchy,Φ is a set of transitions overH , anddeferrable : Σ → 2E .

3.3 State Configurations

A completion transition is triggered by an implicit completion event that is generated
when the source state finishes all internal activity. For a pseudostate or simple state,
this happens (in our UML subset) immediately when the state becomes active. For a
composite state, a completion event is generated when all regions have reached their
final states.

Instead of maintaining a queue of completion transitions, we associate equivalent
information with each active state. We mark an active statebusyif a completion event
for the state has not yet been dispatched. An active state isquiescentiff it is not busy, i.e.,
iff a completion event has been dispatched without firing anycompletion transitions.

Definition 4. A state configurationover a state hierarchy is a pair〈A, Q〉, where the
set of active statesA is a maximal consistent subset ofΣ and Q ⊆ A is the set of
quiescent states.

A busy state iscompletedif, conceptually, a completion event for the state has
been generated but not yet dispatched. Thus, a busy state is completed iff it is a non-
composite state, or a composite state whose active substates are all quiescent final states.

Definition 5. The set ofcompletedstates in a state configurationC = 〈A, Q〉 is

completed(C) = {s ∈ A \ Q | descendants(s) ∩ A ⊆ Σfinal ∩ Q}.

When a composite statec becomes active during execution, it is first busy and not
completed. If all regions of the state reach their final states, thenc becomes busy and
completed and, conceptually, a completion event is generated. After that, it is possible
to either (i) fire a completion transition whose source isc and whose guard istrue , or,
if there is no such transition, (ii) consume the completion event and makec quiescent.
If c has become quiescent, no completion transitions fromc will be fired because the
completion event has already been consumed. This behavior fulfills the requirement of
UML that the guards of completion transitions leaving a state are evaluated only once
after the state has become completed.

If c above is replaced by a non-composite states, the behavior is similar except that
the phase ofs being busy and not completed is skipped.

The initial state configuration of a state machine is〈{s}, {}〉, wheres ∈ Σinitial

andparent(s) = top. The model is ill-formed unless there is exactly one suchs.

3.4 Transition Firing Dynamics

In general, a UML state machine instance moves from a state configuration to another
by firing a maximal conflict-free set of enabled transitions.However, we have cho-
sen to make the restriction, as discussed in Sect. 3.1, that orthogonal regions may
not contain transitions triggered with the same signal. Formally, if t1, t2 ∈ Φ and
trigger (t1) = trigger(t2) 6= τ , then¬(source(t1) ⊥ source(t2)). It follows that
the maximal conflict-free set contains at most one transition.

A transitiont is enabledby an event occurrence iff the event matches the trigger of
t, the source state oft is active, and the guard oft evaluates totrue . If an enabled tran-
sition t is fired, the resulting state configuration is obtained by first removingsource(t)
and any other descendant states ofcontainer (t) from the sets of active states and qui-
escent states, and then addingtargets(t) to active states. Nothing is added to the set of
quiescent states because all new active states are busy.

Definition 6. Let C = 〈A, Q〉 be a state configuration and lett ∈ Φ be a transition
such thatsource(t) ∈ A. Thenext state configurationassociated witht andC is

nextstateconf (t, C) = 〈(A \ S) ∪ targets(t), Q \ S〉,

whereS = descendants(container (t)).

A completion transition is enabled iff its source state is active, busy, and completed,
and the guard condition is true. If there is an active, busy, and completed states that
is not the source state of any enabled completion transition, we say that aquiescing
stepQUIESCE(s) is enabled. The only effect of firing the quiescing step is to makes

quiescent, which corresponds to implicit consumption of the completion event fors. If
there are any enabled completion transitions or quiescing steps, one of them is chosen
nondeterministically for firing and (according to UML) onlyif there are none, signal-
triggered transitions are considered.

Given a state configuration and an event occurrence, it is possible that several tran-
sitions are enabled. However, some of these are ruled out based on UML semantics,
which states that transitions deeper in the hierarchy have priority. Priority also applies
to deferral of events, but not to completion transitions because no busy, completed state
can be a descendant of another one.

Definition 7. LetT be the set of transitions enabled by an evente in a state configura-
tion 〈A, Q〉 and letS = {source(t′) | t′ ∈ T} ∪ {s ∈ A | e ∈ deferrable(s)}. The set
of prioritizedtransitions is

prioritized (T, A) = {t ∈ T | descendants(source(t)) ∩ S = ∅}.

BecauseA is a consistent set of active states and the restriction on triggers in orthog-
onal regions holds, everyt ∈ prioritized (T, A) has in fact the same source state. One
transition in the set is chosen nondeterministically for firing.

3.5 Action Language

In our subset of UML state machines, an action language is used in two roles, namely
to specify the guard constraints and the effects of transitions.

The choice of an action language is connected to the level of support for various
UML model elements. The minimal level is to allow sending signals to objects. Our
action language supports more than this, e.g. attributes ofobjects and dynamic creation
of new objects. The action language supported by our PROMELAtranslation is a subset
of the Jumbala action language [10]. Jumbala is an object-oriented language that could
be characterized as simplified Java tailored to the UML framework. The language is
strongly typed withint (32-bit signed integer) andboolean primitive types and
object reference types.

In state machines, the effects of transitions are lists of Jumbala statements, and the
transition guards areboolean expressions. Below is a list of the kinds of statements
supported by the PROMELA translation. The syntax and semantics follow the conven-
tions of the Java programming language, with an addedsend statement.

– Assignments of the form ’lhs= rhs; ’.
– If statements of the form ’if (condition) { truestmt} else { falsestmt} ’,

whereconditionis aboolean expression. Theelse part may be omitted.
– Iteration statements of the form ’while (condition) { stmt} ’.
– Send statements of the form ’send signalname(paramvalues) to object; ’. A

send statement places a signal eventsignalnamein the input queue ofobject. Values
for signal parameters are given as a comma-separated list.

– Assertions of the form ’assert condition; ’.

The following kinds of Jumbala expressions are supported. Below we assume that
obj is the object in whose context the guard or action is evaluated.

– 32-bit decimal integer literals.
– Theboolean literalstrue andfalse .
– The expressionthis , which is a reference toobj.
– Names of the formidentifieror identifier.identifier. A name can resolve to either an

object reachable fromobj by following links (association instances), or an attribute.
– Infix expressions of the formleftexpr op rightexpr. The binary operatorop can be

one of+, - , * , / , %, &, ˆ , | , >, <, >=, <=, ==, != , <<, or >>. The semantics of
operators is the same as in PROMELA.

– Instance creation expressions of the formnew classname() . The state machine of
the newly created object begins executing automatically.

3.6 Execution of Models

At a given moment in time, the system is in a state that, as a whole, conforms to the
UML model. We call this state theglobal configurationof the system. A global con-
figuration consists of a set of objects, where each objectobj contains the following
information.

while true:
pick an objectobj
〈A, Q〉 := obj .stateconf

sources := completed(obj .stateconf)
compl := {t ∈ Φ | source(t) ∈ sources ∧ trigger (t) = τ ∧ evalguard (obj , t, 〈〉)}
enabled := compl ∪ {QUIESCE(s) | s ∈ sources ∧ 6 ∃t ∈ compl such thats = source(t)}
if enabled 6= ∅:

if enabled ∩ Φpseudostate 6= ∅:
enabled := enabled ∩ Φpseudostate

pick t ∈ enabled

if t = QUIESCE(s) for somes:
obj .stateconf := 〈A, Q ∪ {s}〉

else:
executeeffect(t) in the contextobj
obj .stateconf := nextstateconf (t,obj .stateconf)

else ifobj .inputqueue is not empty:
remove the first element〈e, params〉 from obj .inputqueue

enabled := {t ∈ Φ | source(t) ∈ A ∧ trigger(t) = e ∧ evalguard(obj , t, params)}

if prioritized(enabled , A) 6= ∅:
pick t ∈ prioritized(enabled , A)
assign(obj , t, params)
executeeffect(t) in the contextobj
obj .stateconf := nextstateconf (t,obj .stateconf)
pushobj .deferredqueue in front of obj .inputqueue

obj .deferredqueue := empty
else if∃s ∈ A such thate ∈ deferrable(s):

append〈e, params〉 to obj .deferredqueue

Fig. 2. Execution Algorithm for UML Models

1. The values of the instance attributes ofobj .
2. The links that are navigable fromobj , pointing to other objects.
3. The state configuration of the state machine ofobj , denotedobj .stateconf .
4. The input queue ofobj , which we denote byobj .inputqueue.
5. The deferred queue ofobj , denotedobj .deferredqueue.

The last two elements are FIFO queues whose elements are signal event occurrences
represented as pairs〈e, params〉, wheree ∈ E is a signal name andparams is a tuple
of signal parameter values.

The algorithm in Fig. 2 illustrates the execution of a model.In one step of execution,
one object is nondeterministically chosen. If any completion transitions or quiescing
steps are enabled, then one of them is fired. Otherwise, an event occurrence is removed
from the input queue and a prioritized enabled transition isfired. If no such transition
exists and the event is not deferrable, the event occurrenceis implicitly consumed. In
transition selection, transitions whose source state is aninitial or choice pseudostate
(the setΦpseudostate) are preferred to other completion transitions.

In order to handle signal parameters, the algorithm uses thefollowing auxiliary
procedures.

– assign(obj , t, params) modifies the global configuration by assigning the values
in the tupleparams to the instance attributes ofobj . The attributes receiving the
new values are named in the trigger of the transitiont.

– evalguard(obj , t, params) evaluatesguard(t) in the context of objectobj . The
values ofparams are assigned as ifassign(obj , t, params) had been executed,
for the duration of guard evaluation. After evaluation, theoriginal attributes are
restored and a truth value is returned.

The execution algorithm is such that in one step a single transition in any object
is fired, and in the next step a transition in another object might be fired. We call this
transition segment granularity. Alternatively, it would be relatively straightforward to
modify the algorithm to usecompound transition granularity, so that one step of execu-
tion would correspond to a compound transition, i.e. a sequence of transition segments
with only pseudostates between them. A third possibility would berun-to-completion
granularity, where the firing of a signal-triggered transition in an object is followed by
as many completion transitions or quiescing steps as possible in the same object before
executing transitions in other objects.

4 Translation to PROMELA

This section presents our main contribution, the translation to PROMELA. It translates
the active classes and their state machines to corresponding PROMELA processes, and
uses the deployment diagram to infer the initially active objects and how their associa-
tions to other active objects are set. The resulting PROMELAprogram can be checked
for deadlocks or assertion violations in the model. If an error is found, the error trace
can be simulated in the UML model by using a separate model simulator.

Our translation requires the user to supply information about the model that is oth-
erwise hard to infer: (i) the size of the input and deferred queues (QSIZE), and (ii) the
maximum number of instances of a each class (MAXIDS). It is relatively easy to aug-
ment the PROMELA translation to check whether these limits are exceeded, and give
an error requesting the user to increase them if this happens.

4.1 SPIN and PROMELA: Brief Introduction

PROMELA (PROcess MEta LAnguage) is the input language of thetool SPIN [1]
initially developed in Bell Labs by Gerard Holzmann et al. The language allows for the
dynamic creation of processes and both synchronous (rendezvous) and asynchronous
communication through communication channels.

The PROMELA language is rather rich, however our translation does not need
most of the features. The elements that we use are briefly presented. The queue (asyn-
chronous channel) operations are as follows. The send command q!v1,...,vn appends
the queueq with the message comprised of the valuesv1,...,vn. Similarly, the receive
commandq?v1,...,vn reads the first message from the queue (or blocks if the queue is
empty). A central part of our translation is theif. . . fi compound statement that can for
instance be as follows:

b:class1

a:class1

myPeer

myPeer

#define MAXIDS 2
int class1 myPeer[MAXIDS];
int class1 pid = 0;
init {

atomic {
class1 myPeer[0] = 1;
run class1(0); /* Start active object a */
class1 pid = class1 pid + 1;
class1 myPeer[1] = 0;
run class1(1); /* Start active object b */
class1 pid = class1 pid + 1;

}
}

Fig. 3. An initial configuration and its PROMELA translation.

if
:: (a == 1) -> a = a + 1;
:: (a == 0) -> a = 1;
:: else -> a = 0;

fi
The statement above defines a simple selection construct with three option sequences,
each starting with a double-colon. Each option sequence starts with a guard (in our ex-
ample, the first guard is(a == 1)). This guard must evaluate to true so that this option
sequence can be executed. If several guards evaluate to true, then one of them is chosen
nondeterministically and the associated commands are executed. Theelse sequence (if
present) is chosen iff the guards of every other sequence evaluate to false.

Normally, the scheduled object in SPIN can change after eachcommand. However,
if this is not desired, it can be prevented by enclosing several commands inside an
atomic block (with the keywordatomic). We also use this feature.

4.2 Global Variables and Initialization Block

The global variables of the PROMELA specification are the input queues and deferred
queues for each class. These are arrays withMAXIDS slots. The associations for each
class are also stored in a similar table. Finally, for each class, there is an integer that
stores the process number of the last created instance of that class.

The initialization of the active processes (the structure of the PROMELAinit block)
is as follows. Each active object (declared in the deployment diagram) is processed in
turn. First, its associations are configured by setting the values in the global association
table and then the object is started with the commandrun with its process id as the argu-
ment. In order to maintain scheduling in theinit-process, these commands are enclosed
inside an atomic block. For instance, the left-hand side of Fig. 3 shows a deployment di-
agram describing an initial configuration of a model. It has two objects, a and b, that are
instances of the active class “class1” and the initializations of the association “myPeer”
from “class1” to itself. The right hand-side of Fig. 3 gives the PROMELA translation
of the diagram.

4.3 Translation of State Machines

Figure 5 gives a skeletal translation of the state machine inFig. 1. Each class is trans-
lated to a PROMELA process (aproctype declaration, like line 4 in Fig. 5). This pro-
cess has one argument, the instance number of the created object. The first instance gets
the number zero and the maximum number of instances is user specified. The instance
attributes of the class and integer variables encoding the state configuration of each
region in state machine of the class are declared first.

The main loop encoding the state machine is divided into two parts, evalcom-
pletions andevaltriggers for completion and signal-triggered transitions, respectively
(lines 11 and 34 in Fig. 5). This division is due to the fact that according to UML
semantics, completion transitions have priority over signal-triggered transitions. There-
fore the PROMELA code follows the following idea. First, firecompletion transitions
as long as possible. Then, consume a signal event from the event queue (or wait until
the queue becomes non-empty), fire a signal-triggered transition, and go back to trying
to fire completion transitions.

In order to handle completion transitions correctly without actually generating com-
pletion events and having a queue (with priority over the normal signal event queue) for
them, we use the concept of busy and quiescent states introduced in Sect. 3.3. That
is, for each simple and composite state that has outgoing completion transitions, we
have two possible values in the PROMELA state vector (e.g.s Top Main busy and
s Top Main in the code in Fig. 5). Completion transitions are only evaluated if the
state is marked busy. As pseudostates only have outgoing completion transitions, there
is no need for such additional information for them.

The general structure for the block evaluating whether a completion transition can
be fired is fairly simple as there is no need to take the transition priority caused by
the hierarchy into account. In order to first fire completion transitions leaving from a
pseudostate, the block consists of two consecutive, similar sub-blocks: the first only
considers pseudostates (lines 12–21 in Fig. 5) while the second (lines 22–33) takes
care of the simple and composite states. Both sub-blocks arejust largeif. . . fi blocks
with one option sequence for each (pseudo)state with outgoing completion transitions.
Each option sequence first checks whether the (pseudo)statein question is active (and
busy and completed if it is a simple or composite state), and then non-deterministically
chooses a completion transition whose guard is true. If there was no such completion
transition, then (i) a quiescing step is taken if the state was simple or composite, or (ii)
following UML specifications, an error is reported if the state was a pseudostate.

The code for signal-triggered transitions (lines 35–57) starts with a consumption of
a signal event from the queue, or non-deterministic generation of an external signal if
the state configuration is in a state that can consume an external signal event.5 The
general structure for evaluating whether a signal-triggered transition can be fired is a
large if. . . fi block (lines 40–57) with one option sequence for each state in the top
level state machine. The guards for the option sequences aresimply checks of whether
a particular state is active. The option sequence then depends on whether the state is

5 An externalsignal is a signal with no parameters and whose name starts with a $-sign. It can
be non-deterministically generated by the environment of the UML model. Such signals are
convenient when modeling open or underspecified systems.

simple or composite. If the states is composite, a nestedif. . . fi block follows (for
example lines 42–50 in Fig. 5), this time containing an option sequence for all the
children ofs. After this (possibly empty) block, a subsequentif. . . fi block evaluates for
each outgoing signal-triggered transition whether (i) thetrigger matches the consumed
signal event, and (ii) the guard evaluates to true.

In both blocks described above, the code for firing a transition is similar. The en-
coding of the effect of the transition (a sequence of Jumbalastatements) is presented
in detail in Sect. 4.4. The translation of each transition isfinished with PROMELA
code that sets the new active state to be the target state of the transition. For composite
states, we also have to set its regions to their initial states. If the target state has outgo-
ing completion transitions, then the state is marked busy. After this, the control flow is
transferred to the beginning of the block evaluating completion transitions.

4.4 Translation of Action Language

The supported constructs are presented in Section 3.5. Now,we describe their trans-
lation to PROMELA. The translation of simple assignments issimple, both variable
declarations and assignments are syntactically similar inPROMELA and Jumbala.

Queue operations are used to send messages to active associations of an object or
to read messages from its input queue. In order to manage the dynamic creation of new
instances we store the associations of objects as well as their input queues in a global
array. Each entry in an array of a particular association is an instance number. Thus
sending a message along an association requires accessing this array with the instance
number of the process to obtain the target object. The message is then sent to the input
queue of this object.

New objects are created as follows. There is a global variable that is one greater than
the instance number of the last created instance. This number is used to set the associa-
tions of the new object (entries in the global arrays). Then the appropriateproctype is
called with the instance number. Finally, this number is incremented.

We also support theif. . . else if structure of Jumbala by simulating this with the
PROMELA if. . . fi structure. The constructs are different in that in Jumbala,the ex-
ecuted branch is the first one where the guard evaluates to true. In PROMELA, any
branch whose guard evaluates to true can be chosen. However,this is easy to simulate
by introducing Boolean flags that guarantee that if a particular guard evaluates to true,
then all the preceding guards evaluate to false. Thewhile statement is translated to a
PROMELAdo. . . od structure. This translation is straightforward.

Finally, it should be noted that the code in Fig. 5 does not accurately model schedul-
ing of objects. Indeed, if this code were a part of a larger concurrent system, the system
would have too many behaviors since SPIN could change the scheduled object in the
middle of the execution of a UML transition. This omission isintentional due to lack of
space and the fact that UML semantics does not define scheduling policy (see discus-
sion at the end of Sect. 3.6). One can for instance allow an object to fire only a single
transition or fire completion transitions until a stable configuration is reached. Both
of these scheduling policies (and others) can be implemented using the PROMELA
atomic statement.

c3

c1 c2

e

$tick[x<10]

/a=true;

e /a=true;

$tick[x<10]

[!(x==0)]

[x==0]

e[a==true]

$tick[x>0]/x=x−1;
e[a==true]

s1

s2 s3

s4 s5

s6

s7

s8

$tick[x>0]/x=x−1;

/x=10;a=false;

Init

F

Fig. 4. The flattened version of the state machine in Fig. 1.

4.5 Flat State Machines

An interesting idea is to consider the case where UML state machines are flattened.
Intuitively this means that hierarchical states are replaced with several simple states so
that the behavior of the system is the same, Fig. 4 shows the flattened version of the
state machine in Fig. 1. For flat state machines, we propose a translation where the state
vector of SPIN is made shorter by removing the variables storing the component states.
Instead, the PROMELA code has a label for each state of the flattened machine which
is followed by anif . . . fi block for its outgoing transitions. If a transition is fired,control
flow is set to the transition’s target state by using agoto statement to the corresponding
label. Whether or not this added simplicity compensates thepotential blowup in the
state machine and PROMELA code sizes is a question we have yetto answer.

5 Evaluation

We have implemented our translation in a tool calledPROCO6. Its input parameters are
the UML (version 1.4) model in the XMI format supported by theCoral tool [11], the
maximum number of active instances of a class, and the size ofthe input and deferred
queues. The output is a PROMELA model.

We have tested the tool with several simple models. One of them models a protocol
consisting of an environment and two protocol entities, a sender and a receiver. The
environment initiates a session, after which the protocol entities shake hands. After
the handshake, the protocol is running and the sender forwards data signals from the
environment to the receiver. Our initial model contains a deadlock: the first data signal
may reach the sender before the handshaking is complete, andthe data is lost. This can
be fixed by simply deferring the data signal in the state wherethe sender is waiting for
the handshake.PROCO is able to detect the deadlock and it is possible to simulate the
corresponding trace.

We have also appliedPROCOto a simplified model received from an industrial part-
ner. The model portrays a client-server architecture at an abstract level, using 4 active
classes and a total of 33 state machine states.PROCOand SPIN find a deadlock in the
model, or prove the absence of a deadlock if the model is modified, in fractions of a
second, regardless of whether the model is flattened or not.

6 available athttp://www.tcs.hut.fi/SMUML/

To better assess the scalability of the approach, we need to obtain larger models in
XMI format and run experiments with them. We expect some of the big challenges to
be the handling of data and polymorphism. Our tool does not currently support general-
ization of classes, and there are no arrays or passive classes representing data structures.
Another possible issue is the efficient handling of advancedstate machine concepts such
as history states.

6 Conclusions

This paper outlines an approach to model check UML state machines. Although using
SPIN as a back-end model checker has been tried before, our work differs from previous
work in that it focuses on a UML subset for protocol models. Wealso support more
action language features than some other previous work.

In the near future we plan to conduct case studies to evaluateour approach. We are
especially interested in evaluating whether flattening of state machines can help anal-
ysis, and how PROMELA translations should be designed to increase the efficiency of
partial order reductions. We also wish to investigate whether the subclassing mechanism
of our action language can be used to support data abstraction.

Acknowledgements.This work has been financially supported by Tekes, Nokia, Con-
formiq, Mipro, the Academy of Finland, and the Emil AaltonenFoundation.

References

1. Holzmann, G.J.: The Spin Model Checker. Addison Wesley (2004)
2. Latella, D., Majzik, I., Massink, M.: Automatic verification of a behavioural subset of UML

statechart diagrams using the SPIN model-checker. Formal Aspects of Computing11 (1999)
637–664

3. Mikk, E.: Semantics and Verification of Statecharts. PhD thesis, Christian-Albrechts-
Universität (2000)

4. Porres, I.: Modeling and Analyzing Software Behavior in UML. PhD thesis,Åbo Akademi
(2001)

5. Knapp, A., Merz, S.: Model checking and code generation for UML state machines and
collaborations. In: 5th Workshop on Tools for System Designand Verification. Report 2002-
11, Reisensburg, Germany, Institut für Informatik, Universität Augsburg (2002)

6. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using SPIN to generate tests from ASM spec-
ifications. In: Abstract State Machines. Number 2589 in LNCS, Springer-Verlag (2003)

7. Ober, I., Graf, S., Ober, I.: Validation of UML models via amapping to communicating
extended timed automata. In: 11th International SPIN Workshop on Model Checking of
Software, 2004. Volume LNCS 2989. (2004)

8. Schinz, I., Toben, T., Mrugalla, C., Westphal, B.: The Rhapsody UML verification environ-
ment. In: SEFM, IEEE Computer Society (2004) 174–183

9. Telelogic: Telelogic Tau G2 v2.7 (2006) Software.http://www.telelogic.com/ .
10. Dubrovin, J.: Jumbala — an action language for UML state machines. Research Report

A101, Helsinki University of Technology, Lab. for Theoretical Computer Science (2006)
11. Alanen, M., Porres, I.: Coral: A metamodel kernel for transformation engines. In: Proc. Sec-

ond European Workshop on Model Driven Architecture (MDA). Number 17-04 in Tech. Re-
port, Computing Laboratory, Univ. of Kent (2004) 165–170

/* constant definitions for all states, signals etc. */
#define s Top Init 0
...
proctype M(int proc id) {
5: byte state Top = s Top Init;

byte state Top Main R1 = s Top Main R1 None;
byte state Top Main R2 = s Top Main R2 None;
byte x; bool a; /* Instance attributes of the owning class */
byte trigger, p1, ...; /* for signal type & parameters */

10: xr inputqueues[proc id];

evalcompletions:
if /* Try to fire completion transitions from pseudostates */
:: (state Top == s Top Init) ->

x = 10; a = false; state Top = s Top Main busy; state Top Main R1 = s Top Main R1 Init;
15: state Top Main R2 = s Top Main R2 Init; goto evalcompletions;

:: (state Top Main R1 == s Top Main R1 Init) ->
state Top Main R1 = s Top Main R1 A; goto evalcompletions;

:: (state Top Main R2 == s Top Main R2 Init) ->
state Top Main R2 = s Top Main R2 Loop; goto evalcompletions;

20: :: else -> skip;
fi
if /* Try to fire completion transitions from real states */
:: (state Top Main R1 == s Top Main R1 B busy) ->

a = true; state Top Main R1 = s Top Main R1 Final; goto evalcompletions;
25: :: (state Top = s Top Main busy && state Top Main R1 == s Top Main R1 final &&

state Top Main R2 == s Top Main R2 final) ->
if
:: (x == 0) -> state Top = s Top Final; state Top Main R1 == s Top Main R1 None;

state Top Main R2 == s Top Main R2 None; goto evalcompletions;
30: :: else -> state Top = s Top Main; goto evalcompletions; /* Quiescing step */

fi
:: else -> skip; /* No completion transition was enabled */
fi
evaltriggers:

35: if
:: inputqueues[proc id]?trigger,p1; /* Consume signal event (if any) */
/* Non-deterministically create an external signal if in a state that can consume it */
:: (state Top Main R1 == s Top Main R1 Loop) -> trigger = signal $tick;
fi

40: if
:: (state Top == s Top Main busy || state Top == s Top Main) ->

if
:: (state Top Main R1 == s Top Main R1 A && trigger == signal e && true) ->

state Top Main R1 = s Top Main R1 B busy; goto evalcompletions;
45: :: (state Top Main R2 == s Top Main R2 Loop && trigger == signal $tick && x > 0) ->

x = x - 1; goto evalcompletions;
:: (state Top Main R2 == s Top Main R2 Loop && trigger == signal $tick && x < 10) ->

state Top Main R2 == s Top Main R2 Final -> goto evalcompletions;
:: else -> skip

50: fi
if /* Signal was not consumed by any substate of Main */
:: (trigger == signal e && a == true) -> state Top Main R1 = s Top Main R1 None;

state Top Main R2 = s Top Main R2 None; state Top = s Top Failure; goto evalcompletions;
:: else -> skip

55: fi
:: else -> skip;
fi
goto evaltriggers; /* implicit consumption occurred */

}

Fig. 5. PROMELA code of running example.

